Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
NuSTAR Mission Status Report: Observatory Unfurls its Unique Mast
by Staff Writers
Pasadena CA (JPL) Jun 26, 2012


Artist's concept of NuSTAR in orbit. NuSTAR has a 33-foot (10-meter) mast that deploys after launch to separate the optics modules (right) from the detectors in the focal plane (left). Image credit: NASA/JPL-Caltech.

NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, has successfully deployed its lengthy mast, giving it the ability to see the highest energy X-rays in our universe. The mission is one step closer to beginning its hunt for black holes hiding in our Milky Way and other galaxies. "It's a real pleasure to know that the mast, an accomplished feat of engineering, is now in its final position," said Yunjin Kim, the NuSTAR project manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

Kim was also the project manager for the Shuttle Radar Topography Mission, which flew a similar mast on the Space Shuttle Endeavor in 2000 and made topographic maps of Earth.

NuSTAR's mast is one of several innovations allowing the telescope to take crisp images of high-energy X-rays for the first time. It separates the telescope mirrors from the detectors, providing the distance needed to focus the X-rays. Built by ATK Aerospace Systems in Goleta, Calif., this is the first deployable mast ever used on a space telescope.

On June 21 at 10:43 a.m. PDT (1:43 p.m. EDT), nine days after launch, engineers at NuSTAR's mission control at UC Berkeley in California sent a signal to the spacecraft to start extending the 33-foot (10-meter) mast, a stable, rigid structure consisting of 56 cube-shaped units.

Driven by a motor, the mast steadily inched out of a canister as each cube was assembled one by one. The process took about 26 minutes. Engineers and astronomers cheered seconds after they received word from the spacecraft that the mast was fully deployed and secure.

The NuSTAR team will now begin to verify the pointing and motion capabilities of the satellite, and fine-tune the alignment of the mast. In about five days, the team will instruct NuSTAR to take its "first light" pictures, which are used to calibrate the telescope.

Why did NuSTAR need such a long, arm-like structure? The answer has to do with the fact that X-rays behave differently than the visible light we see with our eyes. Sunlight easily reflects off surfaces, giving us the ability to see the world around us in color.

X-rays, on the other hand, are not readily reflected: they either travel right through surfaces, as is the case with skin during medical X-rays, or they tend to be absorbed, by substances like your bone, for example.

To focus X-rays onto the detectors at the back of a telescope, the light must hit mirrors at nearly parallel angles; if they were to hit head-on, they would be absorbed instead of reflected.

On NuSTAR, this is accomplished with two barrels of nested mirrors, each containing 133 shells, which reflect the X-rays to the back of the telescope. Because the reflecting angle is so shallow, the distance between the mirrors and the detectors is long. This is called the focal length, and it is maintained by NuSTAR's mast.

The fully extended mast is too large to launch in the lower-cost rockets required for relatively inexpensive Small Explorer class missions like NuSTAR. Instead NuSTAR launched on its Orbital Science Corporation's Pegasus rocket tucked inside a small canister.

This rocket isn't as expensive as its bigger cousins because it launches from the air, with the help of a carrier plane, the L-1011 "Stargazer," also from Orbital.

.


Related Links
NuSTAR at Caltech
NuSTAR at NASA
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Instrument Integration Begins at Goddard on MMS Spacecraft
Greenbelt MD (SPX) Jun 19, 2012
The decks have arrived. Engineers working on NASA'S Magnetospheric Multiscale (MMS) mission have started integrating instruments on the first of four instrument decks in a newly fabricated cleanroom at Goddard Space Flight Center in Greenbelt, Md. The MMS mission consists of four identical spacecraft, and each instrument deck will have 25 sensors per spacecraft. "This is the first time NAS ... read more


TECH SPACE
ESA to catch laser beam from Moon mission

Researchers Estimate Ice Content of Crater at Moon's South Pole

Researchers find evidence of ice content at the moon's south pole

Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

TECH SPACE
NASA tweaks flight path of Mars mission

Extensive Water in Mars Interior

Orbiter Out of Precautionary 'Safe Mode'

Researchers calculate size of particles in Martian clouds of CO2 snow

TECH SPACE
XCOR and Excalibur Almaz sign MOU for suborbital training services

Complex Challenges Solved In Tech Meetings For Commercial Crew Program

Boeing Completes Key Reviews of Space Launch System

Two NASA Visualizations Selected for Computers Graphics Showcase

TECH SPACE
Experts respond to rumors about Shenzhou-9

Staying stimulated in space

China's Hu praises astronauts for space advance

Packing Up Tiangong

TECH SPACE
New Space Station Crew Confirmed

Spacewalk to work on ISS scheduled

Did You Say 1.2 Billion Particles Per Month?

Varied Views from the ISS

TECH SPACE
USAF officials announce milestone Atlas V launch

EVE Underflight Calibration Sounding Rocket Launch

ILS and AsiaSat Announce a New Contract for an ILS Proton Launch

A milestone in launcher preparations for Arianespace's fourth Ariane 5 flight of 2012

TECH SPACE
Forgotten Star Cluster Useful For Solar Science And Search for Earth Like Planets

SciTechTalk: Quick, name the planets!

Where Are The Metal Worlds And Is The Answer Blowing In The Wind

Metal-poor stars are rich with small planets

TECH SPACE
India readies upgrade of 'world's cheapest' tablet

Google to talk tablets, TV, social and more

NuSTAR Mission Status Report: Observatory Unfurls its Unique Mast

Toxic legacy in Malaysia rare-earths village




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement