Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Northwestern Researchers Set World Record for Highest Surface Area Material
by Staff Writers
Chicago IL (SPX) Sep 12, 2012


File image: metal-organic frameworks (MOFs).

Northwestern University researchers have broken a world record by creating two new synthetic materials with the greatest amount of surface areas reported to date. Named NU-109 and NU-110, the materials belong to a class of crystalline nanostructure known as metal-organic frameworks (MOFs) that are promising vessels for natural gas storage for vehicles, catalysts, and other sustainable materials chemistry.

The materials' promise lies in their vast internal surface area. If the internal surface area of one NU-110 crystal the size of a grain of salt could be unfolded, the surface area would cover a desktop. Put another way, the internal surface area of one gram of NU-110 would cover one-and-a-half football fields.

The research team, led by Omar Farha, research associate professor of chemistry in the Weinberg College of Arts and Sciences, has synthesized, characterized, and computationally simulated the behavior of the two MOFs that display the highest experimental Brunauer-Emmett-Teller surface areas of any porous material on record, 7,000 m2/g; that is, one kilogram of the material contains an internal surface area that could cover seven square kilometers. (Brunauer-Emmett-Teller, or BET, is an analysis technique for measuring the surface area of a material.)

The extremely high surface area, which is normally not accessible due to solvent molecules that stay trapped within the pores, was achieved using a carbon dioxide activation technique. As opposed to heating, which can remove the solvent but also damage the MOF material, the carbon dioxide-based technique removes the solvent gently and leaves the pores completely intact.

The development could rapidly lead to further advances. MOFs are composed of organic linkers held together by metal atoms, resulting in a molecular cage-like structure. The researchers believe they may be able to more than double the surface area of the materials by using less bulky linker units in the materials' design.

The research comes from the labs of Joseph T. Hupp, professor of chemistry in Weinberg, and Randall Q. Snurr, professor of chemical and biological engineering at the McCormick School of Engineering.

Other authors include SonBinh Nguyen, professor of chemistry in Weinberg; Ibrahim Eryazici, Nak Cheon Jeong, Brad G. Hauser, Amy A. Sarjeant, and Christopher E. Wilmer, all of Northwestern; and A. Ozgur Yazaydin of the University of Surrey in the United Kingdom.

The MOF-designing and -synthesizing technology is being commercialized by NuMat Technologies, a Northwestern startup that has won more than $1 million in business plan competitions since incorporating in February.

A paper describing the findings, "Metal-organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?" was published August 20 in the Journal of the American Chemical Society.

.


Related Links
McCormick School of Engineering and Applied Science, Northwestern University
NuMat Technologies
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Rust Never Sleeps
Berkeley CA (SPX) Sep 12, 2012
Rust - iron oxide - is a poor conductor of electricity, which is why an electronic device with a rusted battery usually won't work. Despite this poor conductivity, an electron transferred to a particle of rust will use thermal energy to continually move or "hop" from one atom of iron to the next. Electron mobility in iron oxide can hold huge significance for a broad range of environment- a ... read more


TECH SPACE
Chandrayaan II may be delayed, says ISRO Chief

First man on moon to be buried at sea: Armstrong family

Russian deputy PM proposes Moon station

NASA's GRAIL Moon Twins Begin Extended Mission Science

TECH SPACE
NASA Observations Point to 'Dry Ice' Snowfall on Mars

Mars rover Curiosity working 'flawlessly': NASA

Lockheed Martin Begins Final Assembly of NASA's MAVEN Spacecraft

Early Mars may not have been hospitable after all: study

TECH SPACE
Mankind's messenger at the final frontier

35 years on, Voyager 'dancing on edge' of outer space

Space-age food served up with seeds of success

Africa eyes joint space agency

TECH SPACE
Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

China unveils ambitious space projects

TECH SPACE
Astronauts Take Second Spacewalk

ISS crew complete space station repair

Crew Wraps Up Preparations for Wednesday's Spacewalk

Building MLM Under Way at Khrunichev

TECH SPACE
SES signs three satellite launches with SpaceX

S. Korea to make third rocket launch bid in October

Arianespace concurrently manages six missions with Ariane 5 and Soyuz

First-Stage Fuel Loaded; Launch Weather Forecast Improves

TECH SPACE
Birth of a planet

A Hot Potential Habitable Exoplanet around Gliese 163

NASA's Kepler Discovers Multiple Planets Orbiting a Pair of Stars

How Old are the First Planets?

TECH SPACE
SciTechTalk: Tablet wars heat up

System will seek orbiting space debris

Apple unveils thinner, more powerful iPhone 5

Zuckerberg eyes mobile after Facebook IPO flop




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement