Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Amplification process set to transform communications, imaging, computing
by Staff Writers
Washington DC (SPX) Jan 21, 2015


This schematic illustrates the concepts involved in the cycling excitation process. Image courtesy Yuchun Zhou/UCSD. For a larger version of this image please go here.

Signal amplification is ubiquitous to all electronic and optoelectronic systems for communications, imaging and computing - its characteristics directly impact device performance.

A new signal amplification process discovered by a team of University of California, San Diego researchers is now poised to fuel new generations of electrical and photonic devices - transforming the fields of communications, imaging and computing. In the journal Applied Physics Letters, from AIP Publishing, the team describes their work behind this discovery.

"For many years, the semiconductor industry has relied on photodetectors for optoelectrical conversion, followed by low-noise electronic amplifiers to convert optical signals into electronic signals with amplification to enable information detection and processing," explained Yu-Hwa Lo, a professor of electrical and computer engineering at the University of California, San Diego.

It's also widely recognized that the highest sensitivity can be achieved by combining an electronic amplifier with a photodetector that uses an internal amplification mechanism to optimally balance out the thermal noise of the electronic amplifier and the shot noise, a type of noise in the photodetector that arises because of the particle nature of light.

"Following this established principle, avalanche photodetectors that use impact ionization became the devices of choice and have remained so for many decades," Lo noted. Impact ionization, however, has drawbacks such as high operation voltage - typically 30 to 200V - and rapidly increasing noise with amplification.

So the team searched for a more efficient intrinsic amplification mechanism for semiconductors to amplify the photocurrent at much lower voltage and noise than the current method.

"Thanks to insights of the complex interactions among electrons in localized and extended states and phonons (a unit of vibrational energy that arises from oscillating atoms within a crystal), we've discovered a far more efficient mechanism - the cycling excitation process (CEP) - to amplify the signal," Lo said.

Ready to delve into the technical concepts involved? The device primarily has a p/n junction (a boundary between two semiconductor materials within a single crystal of semiconductor) similar to those found in semiconductor devices.

"The only unique feature is that both sides of the p/n junction contain a substantial amount of counter doping - a large number of donors exist in the p-region, with acceptors in the n-region," explained Lo. Such a structure is called a "heavily compensated p/n junction."

Counter impurities in the compensated p/n junction are responsible for the team's highly efficient signal (photocurrent) amplification process. Electrons or holes crossing the depletion region gain kinetic energy and, in turn, excite new electron-hole pairs using the compensating impurities (donors in the p-side and acceptors in the n-side) as intermediate states.

"An energetic electron, for example, can excite an electron from an occupied acceptor to the conduction band, while a phonon is absorbed subsequently to fill the acceptor with an electron from the valence band - producing a hole in the valence band to complete the generation of an electron-hole pair," said Yuchun Zhou, first author of the paper and a doctoral student in Lo's group.

"This type of process occurs on both sides of the p/n junction and forms cycles of electron-hole excitation to produce high gain."

The key discovery and innovation for the amplification process is to use the compensating impurities as the intermediate steps for electron-hole pair generation.

"Impurity states are localized, so the conservation of momentum that limits the efficiency for conventional impact ionization can be greatly relaxed and leads to higher signal amplification efficiency and reduced operation voltage," added Lo.

Most striking implication of the team's discovery? "Perhaps that an entirely new physical mechanism can be found in the most common device structure - a p/n junction - that has been used since the semiconductor industry's heyday," said Lo.

"It appears that a small modification, such as heavy doping compensation, from a common structure can be used to take advantage of the unusual physical process that results from concerted interactions between electrons in extended and localized (impurity) states and phonons."

With further improvements, according to the team, the discovered signal amplification mechanism can be used in a wide variety of devices and semiconductors - presenting a new paradigm for the semiconductor industry.

"With an efficient gain mechanism at an operation voltage compatible with CMOS integrated circuits, it's possible to produce communication and imaging devices with superior sensitivity at a low cost," Lo pointed out. "By using other methods along with optical excitation to produce the seed carriers that initiate the cycling excitation process, we can conceive new types of transistors and circuits and extend the scope of applications beyond optical detection."

"Discovery of a Photoresponse Amplification Mechanism in Compensated PN Junctions," is authored by Yuchun Zhou, Yu-Hsin Liu, Samia N. Rahman, David Hall, L.J. Sham and Yu-Hwa Lo.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Training the next generation of power engineers
Syracuse NY (SPX) Jan 20, 2015
Most people only think about the electricity that powers our homes and gadgets when it isn't there. When the power is humming, we tend to take it for granted. The trouble is, the network that delivers the electricity to keep our lights on, known as the grid, is sometimes pushed to its limits. High demand can lead to blackouts and increased operational costs. At the same time, the grid is being a ... read more


ENERGY TECH
Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

ENERGY TECH
Team Working on Strategy to Fix Flash Memory Issue

UA-led HiRISE camera spots long-lost space probe on Mars

Lost and found in space: Beagle 2 seen on Mars 11 years on

Crystal-Rich Rock 'Mojave' is Next Mars Drill Target

ENERGY TECH
Tech barons paint rosy future at Davos despite security fears

U.S. food headed for ISS stalled in Russian customs

US venture capital funding near dot-com boom levels

Singer Sarah Brightman delays space tourist training

ENERGY TECH
China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

ENERGY TECH
Russian Cargo Spacecraft to Supply ISS With Black Caviar

Astronauts' year-long mission will test limits

Astronauts prepare for year-long stay on space station

Astronauts take shelter after alarm at space station

ENERGY TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Russian firm seals $1 billion deal to supply US rocket engines

SpaceX CEO Elon Musk wants to shake up satellite industry

Firefly Space Systems and NASA have Inked Space Act Agreement

ENERGY TECH
Three nearly Earth-size planets found orbiting nearby star

Three-Planet System Holds Clues to Atmospheres of Earth-size Worlds

Meteorites weren't exactly the building blocks of young planets

A twist on planetary origins

ENERGY TECH
Is glass a true solid?

Scientists 'bend' elastic waves with new metamaterials

Laser-generated surface structures create extremely water-repellent metals

New laser-patterning technique turns metals into supermaterials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.