Subscribe free to our newsletters via your
. 24/7 Space News .

New revolutionary sensor links pressure to color change
by Staff Writers
Riverside CA (SPX) May 06, 2014

Digital images (top) and schematic illustration (bottom) show the color change of the sensor film after experiencing different amounts of pressure. Image courtesy Yin Lab, UC Riverside.

Imagine an automobile crash test that uses test dummies painted all over with a substance that can change color according to the levels of stress that various parts of the dummies' bodies will endure. Such a "color map" could provide vital information to engineers designing safer automobiles.

Or imagine baseball gloves that when worn show the batters if they are using the appropriate amount of pressure to grip their bats, resulting in better performance.

New technology developed at the University of California, Riverside may now make the above and similar ideas a reality. Indeed, the technology could be applied to improve everyday devices, such as smartphones, that for operation rely on the right amount of pressure applied to them.

"We have developed a high-resolution pressure sensor that indicates pressure by varying its color - a sensor that all of us can use with just our eyes," said Yadong Yin, an associate professor of chemistry, whose lab led the research.

The lab used a self-assembly method to string together gold nanoparticles which they then embedded into a polymer film. The film deformed when pressed, stretching the gold nanoparticle strings by increasing the separation between neighboring gold nanoparticles.

"This increased separation alters the way the nanoparticles interact with light," Yin explained. "When linked together, the gold nanoparticles originally appear blue. But they gradually change to red with increasing pressure as the nanoparticles start disassembling. This easily and visually helps us figure out how much pressure has been applied."

Study results appear this month in Nano Letters.

The sensor that Yin's lab developed differs from commercially available pressure sensor films. The latter indicate pressure by changing the intensity of just one color (for example, a pale red to a darker red). They tend to be difficult to interpret and have low resolution and contrast.

The new technology produces a mosaic of easy-to-distinguish colors and has the benefit of higher contrast and resolution. It can potentially be used in many safety devices for revealing pressure distribution over even very complex surfaces.

"The many electronic stress sensors commercially available are bulky and not suitable for certain applications," Yin said. "For example, it is difficult to tell the stress distribution over a particular area if the contact surfaces are not flat and uniform. Our sensor films can be painted on the contact surfaces so that the color variance in different areas clearly shows the stress distribution over the contact surface."

While his lab used gold in the experiments, silver and copper could also work, Yin added. The sensor the lab developed is a solid plastic film. Under stress, it deforms like conventional plastics. The new color that arises persists after the stress is removed.

"This is why we are calling it a 'colorimetric stress memory sensor,'" Yin said.

One of the research interests of his lab is the design of materials with new properties via the self-assembly process. The lab first makes nanoparticles and then organizes them together to produce new properties arising from particle-particle interactions.

"In the case of our sensor, we initially found a way to organize gold nanoparticles together to form strings," Yin said.

"That process is accompanied by a sharp color-change from red to blue. We speculated that the reverse - disassembly - process might have the reverse color change: from blue to red. We found to our surprise that mechanical force could achieve this disassembly. Considerable effort has been made by researchers to study nanoparticle self-assembly. Indeed, gold nanoparticles have conventionally been used as sensors based on the self-assembly process. What is novel about our work is that it shows that the disassembly process can also find great applications if the assembly is designed to be reversible."

Yin was joined in the research by Xiaogang Han, a former postdoctoral researcher in his lab; and Yiding Liu, a graduate student who recently won the graduate student silver award at the Materials Research Society in San Francisco, Calif.


Related Links
University of California - Riverside
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

A Glassy Look for Manganites
Berkeley CA (SPX) Apr 30, 2014
Manganites - compounds of manganese oxides - show great promise as "go-to" materials for future electronic devices because of their ability to instantly switch from an electrical insulator to a conductor under a wide variety of external stimuli, including magnetic fields, photo-excitations and vibrational excitations. This ultrafast switching arises from the many different ways in which th ... read more

Russia to begin Moon colonization in 2030

LRO View of Earth

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

John C. Houbolt, Unsung Hero of the Apollo Program, Dies at Age 95

Reset and Recovery for Opportunity

NASA wants greenhouse on Mars by 2021

Mars mission scientist Colin Pillinger dies

NASA's Curiosity Rover Drills Sandstone Slab on Mars

More Plant Science as Expedition 39 Trio Trains for Departure

Pioneering Test Pilot Bill Dana Dies at Age 83

NASA Astronauts go underwater to test tools for a mission to an asteroid

Pioneering Mercury Astronauts Launched America's Future

New satellite launch center to conduct joint drill

China issues first assessment on space activities

China launches experimental satellite

Tiangong's New Mission

Ham video premiers on Space Station

NASA Seeks to Evolve ISS for New Commercial Opportunities

Astronauts Complete Short Spacewalk to Replace Backup Computer

No Official Confirmation of NASA Severing Ties with Russian Space Agency

Preliminary Injunction Lifted - ULA Purchase of RD-180 Engines Complies with Sanctions

Replacing Russian-made rocket engines is not easy

US sanctions against Russia had no effect on International Launch Services

SHERPA launch service deal to deploy 1200 kilo smallsat payloads

Length of Exoplanet Day Measured for First Time

Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun

Alien planet's rotation speed clocked for first time

Seven Samples from the Solar System's Birth

High-Strengh Materials from the Pressure Cooker

The pitch drops that got the world talking

New revolutionary sensor links pressure to color change

Element 117, discovered by Laboratory, one step closer to being named

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.