Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
New nanoscale parameter by Aalto University resolves dilemmas on silicon property
by Staff Writers
Aalto, Finland (SPX) Aug 25, 2011


For illustration purposes only.

The new discovery by Aalto University can have major impact on future nanoscale device design, such as ultraviolet photo detectors and drug delivery.

In bulk size, many materials like silicon are as brittle as glass. In nanoparticle size, the same material can be compressed into half their size without breaking them. The new discovery was made by an international research group led by Professor Roman Nowak.

Atom by atom, the researchers followed the rearrangements resulting from squeezing tiny spheres of silicon. They found that the response of the material varied depending on the degree of deconfinement that contrasts the wellknown "size effect".

Shrinking the size of material volumes drives unexpected deformation mechanisms under mechanically induced shape changes.

In its bulk form, silicon is known to display plasticity characterised by phase transformations. However, the research found that progression from a state of relative constraint of the bulk to a less constrained state of the nanoparticle leads to a shift in silicon's mechanical response.

Not a mere peculiarity, the study provides a basis for understanding the onset of incipient plasticity in nanovolumes thus a repeatable vehicle for generating crystal imperfections that dramatically impact functional properties and biocompatibility.

The succinct explanation of this topic affects future nano-devices such as ultraviolet photo detectors, lasers on a chip, drug delivery, and biological markers.

The introduction of the "nanoscale confinement" parameter has never explicitly been taken into account so far for size dependent phenomena. The finding resolves dilemmas noted by the earlier studies and offers avenues to a broad range of nananoscale device design.

The results resolve a controversy noted in previous studies and the insight will benefit the processing of future nanostructures in a large scale.

The discovery was recently published in the Nature Nanotechnology journal. The research has been supported by the Academy of Finland, CSC-IT Center for Science (Finland), the Foundation of Helsinki University of Technology, Ceramic Society of Japan and National Science Foundation (USA). The research was led by Professor Roman Nowak, Nordic Hysitron Laboratory, Aalto University in cooperation with the Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, while the calculations were consulted with Professor Risto Nieminen of CSC-IT / Aalto University. D. Chrobak, N. Tymiak, A. Beaber, O Ugurlu, W.W. Gerberich and R. Nowak, Deconfinement leads to changes in the nanoscale plasticity of silicon Nature Nanotechnology 6 (2011) 480.

.


Related Links
Aalto University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Berkeley Lab scientists unveil an X-ray technique called HARPES
Berkeley CA (SPX) Aug 26, 2011
The expression "beauty's only skin-deep" has often been applied to the chemistry of materials because so much action takes place at the surface. However, for many of the materials in today's high technologies, such as semiconductors and superconductors, once a device is fabricated it is the electronic structures below the surface, in the bulk of the material or in buried layers, that determine i ... read more


CHIP TECH
NASA's Next Generation Robotic Lander Gets Sideways During Test

Moon Express Gets Thumbs-Up from NASA for Developing New Lunar Landing Technology

NASA Moon Mission in Final Preparations for September Launch

Neil Armstrong urges return to the Moon

CHIP TECH
Russian, European space agencies to team up for Mars mission

New Rover Snapshots Capture Endeavour Crater Vistas

France, Russia talk of Mars mission

Possibility of Mars microbial life eyed

CHIP TECH
New Report Analyzes Development Paths of Emerging Space Nations and Sustainable Use of Outer Space

First Soyuz launch from Kourou to go ahead: Arianespace

Recent grad's astro feats regarded as research crown 'joule'

Draper Spacesuit Could Keep NASA Astronauts Stable, Healthier in Space

CHIP TECH
Orbits for Tiangong

Chinese orbiter launch failure will not affect unmanned space module launch

Rocket malfunction causes satellite to not reach preset orbit

China satellite aborts mission after 'malfunction'

CHIP TECH
Thales Alenia Space's Cygnus PCM shipped to United States

Resupply Craft Lost While Crew Focuses on Departure and Science

Russia may delay manned space launch after crash

ISS crew safe despite supply failure: Russia, US

CHIP TECH
The fifth Ariane 5 of 2011 is ready for integration of its dual-satellite payload

Glonass-M satellite launch postponed for additional check

Russia 'grounds Soyuz rockets' after space crash

Russian spaceship crashes back to Earth

CHIP TECH
A Planet Made of Diamond

Astronomers Find Ice and Possibly Methane on Snow White

Hubble to Target 'Hot Jupiters'

Stellar eclipse gives glimpse of exoplanet

CHIP TECH
Steve Jobs a product wizard: Wozniak

Japan cuts radiation exposure limits for children

Mexican Government Gains Satellite Management Efficiency from Optimal Satcom Integrated Software System

Fukushima caesium leaks 'equal 168 Hiroshimas'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement