Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




TECH SPACE
New information on binding gold particles over metal oxide surfaces
by Staff Writers
Helsinki, Finland (SPX) Jan 25, 2013


This is a visualization of an atomic structure of the studied system where a negatively charged (charge -1) gold adatom is adsorbed on molybdemun-doped calcium oxide. The molebdenum dopant has an oxidation state of +3. The adsorption energy consists of ionocovalent, redox and Coulombic contributions. Yellow: gold; green: molybdenum; blue: calcium; red: oxygen. Credit: Karoliina Honkala.

The strong binding of gold on electronically modified calcium oxide can now be understood in detail. In a computational study, researchers Jenni Andersin, Janne Nevalaita, Karoliina Honkala and Hannu Hakkinen at the University of Jyvaskyla Nanoscience Center have shown how redox chemistry entirely determines the adsorption strength of gold on the modified oxide where one metal atom is replaced with molybdenum. The study was funded by the Academy of Finland.

The research team applied the so-called Born-Haber cycle to analyse how different terms contribute to adsorption energy. The calculations were done at the supercomputers of the CSC - IT Center of Science by employing quantum mechanical simulation methods.

In the oxide lattice, the molybdenum atom donates two electrons into the oxide. When a gold atom adsorbs on the oxide surface, a redox reaction takes place. In this process, a third electron transferred by the dopant is gained by gold, and energy is released.

By varying the dopant among several transition metal atoms, the researchers found that the amount of energy released linearly correlates with the ability of the dopant to give an electron. The trend can be used to estimate how much a guest atom stabilises gold adsorption without calculating the adsorption energy.

The research results are important for understanding catalyst-support interaction. The results fully support the experimental observation where gold nanoparticles have been seen to form flat structures over modified calcium oxide surfaces.

A similar Born-Haber cycle, as applied in this study, can also be employed to analyse oxide-catalysed chemical reactions that follow the redox mechanism.

Catalysts are commonly used by industry, for instance, in the production of fuels, plastics, fertilisers and other similar products. Metal oxide surfaces are widely used as support materials for metal catalysts particles.

The binding properties and shape of metal nanoparticles sensitively depend on the interaction between the support and the catalyst. By tuning this interaction, it is possible to affect the number and properties of catalytically active sites, or even create new sites. One way to modify the interaction is to dope the oxide with guest metal atoms that can donate extra electrons into a material.

The results of the research team were published in December 2012 in the prestigious chemistry journal Angewandte Chemie: "The Redox Chemistry of Gold with High-Valence Doped Calcium Oxide"

.


Related Links
Academy of Finland
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Researchers Create Method for More Sensitive Electrochemical Sensors
Evanston IL (SPX) Jan 22, 2013
Graphene and related materials hold promise for the future of electrochemical sensors - detectors that measure the concentration of oxygen, toxic gases, and other substances - but many applications require greater sensitivity at lower detection ranges than scientists have been able to achieve. A Northwestern University research team and partners in India have recently developed a new metho ... read more


TECH SPACE
US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

Mission would drag asteroid to the moon

TECH SPACE
Opportunity At Work At Whitewater Lake

Thawing Dry Ice Drives Groovy Action On Mars

Mars Rover Curiosity Uses Arm Camera at Night

Possible Clues to Ancient Subsurface Biosphere on Mars

TECH SPACE
Iran Manufacturing Hi-Tech Spacesuits

TDRS-K Offers Upgrade to Vital Communications Net

An Astronaut's Guide

Mathematical breakthrough sets out rules for more effective teleportation

TECH SPACE
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

TECH SPACE
NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

ESA workhorse to power NASA's Orion spacecraft

Competition Hopes To Fine Tune ISS Solar Array Shadowing

TECH SPACE
Azerspace And Africasat-1a "fit" for Ariane 5 launch

NASA Selects Experimental Commercial Suborbital Flight Payloads

Payload elements come together in Starsem's wrap-up Soyuz mission from Baikonur Cosmodrome for Globalstar

Amazonas 3 in Kourou for Ariane 5 year-opening launch campaign

TECH SPACE
New Evidence Indicates Auroras Occur Outside Our Solar System

Glitch has space telescope shut down

Earth-size planets common in galaxy

NASA's Hubble Reveals Rogue Planetary Orbit For Fomalhaut B

TECH SPACE
New information on binding gold particles over metal oxide surfaces

Researchers Create Method for More Sensitive Electrochemical Sensors

Phoenix Rising: New Video Shows Advances in Satellite Repurposing Program

Novel sensor provides bigger picture




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement