Subscribe free to our newsletters via your
. 24/7 Space News .




INTERNET SPACE
New device could increase Internet download speeds
by Staff Writers
Minneapolis MN (SPX) Oct 05, 2012


University of Minnesota researchers have invented a novel microscale mechanical switch of light on a silicon chip.

A team of scientists and engineers at the University of Minnesota has invented a unique microscale optical device that could greatly increase the speed of downloading information online and reduce the cost of Internet transmission. The device uses the force generated by light to flop a mechanical switch of light on and off at a very high speed.

This development could lead to advances in computation and signal processing using light instead of electrical current with higher performance and lower power consumption. The research results were published in the online journal Nature Communications.

"This device is similar to electromechanical relays but operates completely with light," said Mo Li, an assistant professor of electrical and computer engineering in the University of Minnesota's College of Science and Engineering.

The new study is based on a previous discovery by Li and collaborators in 2008 where they found that nanoscale light conduits can be used to generate a strong enough optical force with light to mechanically move the optical waveguide (channel of information that carries light).

In the new device, the researchers found that this force of light is so strong that the mechanical property of the device can be dominated completely by the optical effect rather than its own mechanical structure. The effect is amplified to control additional colored light signals at a much higher power level.

"This is the first time that this novel optomechanical effect is used to amplify optical signals without converting them into electrical ones," Li said.

Glass optical fibers carry many communication channels using different colors of light assigned to different channels. In optical cables, these different-colored light channels do not interfere with each other. This non-interference characteristic ensures the efficiency of a single optical fiber to transmit more information over very long distances.

But this advantage also harbors a disadvantage. When considering computation and signal processing, optical devices could not allow the various channels of information to control each other easily...until now.

The researchers' new device has two optical waveguides, each carrying an optical signal. Placed between the waveguides is an optical resonator in the shape of a microscale donut (like a mini-Hadron collider.) In the optical resonator, light can circulate hundreds of times gaining intensity.

Using this resonance effect, the optical signal in the first waveguide is significantly enhanced in the resonator and generates a very strong optical force on the second waveguide. The second waveguide is released from the supporting material so that it moves in oscillation, like a tuning fork, when the force is applied on it.

This mechanical motion of the waveguide alters the transmission of the optical signal. Because the power of the second optical signal can be many times higher than the control signal, the device functions like a mechanical relay to amplify the input signal.

Currently, the new optical relay device operates one million times per second. Researchers expect to improve it to several billion times per second. The mechanical motion of the current device is sufficiently fast to connect radio-frequency devices directly with fiber optics for broadband communication.

Li's team at University of Minnesota includes graduate students Huan Li, Yu Chen and Semere Tadesse and former postdoctoral fellow Jong Noh. Funding support of the project came from the University of Minnesota College of Science and Engineering and the Air Force Office of Scientific Research.

To read the full research paper, visit the Nature Communications website at http://z.umn.edu/optical.

.


Related Links
University of Minnesota
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERNET SPACE
Facebook hits billion users amid revenue worries
San Francisco (AFP) Oct 4, 2012
Facebook on Thursday celebrated eclipsing the billion-member mark, touting its mission to make the world more social while investors wondered how the service would cash in on its popularity. Co-founder and chief executive Mark Zuckerberg announced that more than a seventh of the planet's population resided virtually at Facebook, saying the accomplishment was "humbling." "Helping a billio ... read more


INTERNET SPACE
China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

NASA sees 'gateway' for space missions

Protection for Moon, Mars astronauts eyed

INTERNET SPACE
NASA rover checks in online from Mars

Russia, U.S. to send crew to ISS for year

From 'Bathurst Inlet' to 'Rocknest'

Gale Crater Set for Summer Heat Wave?

INTERNET SPACE
Virgin Galactic Acquires Full Ownership of The Spaceship Company

Wind delays Austrian's edge of space jump in US

Brazil's vibrant high-tech industry urged to go global

Uwingu's Crowdfunding Campaign Concludes

INTERNET SPACE
China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

INTERNET SPACE
Mission accomplished for ATV Edoardo Amaldi

ISS Partners Plan Yearlong Mission to Orbital Station

Space freighter burns up in suicide dive

Space freighter undocking set for Friday

INTERNET SPACE
SpaceX craft on way to ISS in first supply run

Orbital Begins Antares Rocket Operations at Mid-Atlantic Regional Spaceport

H-IIB Launch Service Privatization

Ariane rocket launches two telecom satellites

INTERNET SPACE
The Magnetic Wakes of Pulsar Planets

Stagnant Interiors Suppress Chances of Life on Super-Earths

Meteors Might Add Methane to Exoplanet Atmospheres

Two 'hot Jupiters' found in star cluster: NASA

INTERNET SPACE
Google, publishers end long-running copyright case

Apple even stronger a year after Steve Jobs death

Prehistoric builders reveal trade secrets

Space debris delays Japan's satellite experiment




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement