Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
New design tool for metamaterials
by Staff Writers
Berkeley CA (SPX) Feb 17, 2015


Confocal microscopy confirmed that the nonlinear optical properties of metamaterials can be predicted using a theory about light passing through nanostructures. Image courtesy of Xiang Zhang, Berkeley Lab.

Metamaterials - artificial nanostructures engineered with electromagnetic properties not found in nature - offer tantalizing future prospects such as high resolution optical microscopes and superfast optical computers. To realize the vast potential of metamaterials, however, scientists will need to hone their understanding of the fundamental physics behind them.

This will require accurately predicting nonlinear optical properties - meaning that interaction with light changes a material's properties, for example, light emerges from the material with a different frequency than when it entered. Help has arrived.

Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have shown, using a recent theory for nonlinear light scattering when light passes through nanostructures, that it is possible to predict the nonlinear optical properties of metamaterials.

"The key question has been whether one can determine the nonlinear behavior of metamaterials from their exotic linear behavior," says Xiang Zhang, director of Berkeley Lab's Materials Sciences Division and an international authority on metamaterial engineering who led this study.

"We've shown that the relative nonlinear susceptibility of large classes of metamaterials can be predicted using a comprehensive nonlinear scattering theory. This will allow us to efficiently design metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion."

Zhang, who holds the Ernest S. Kuh Endowed Chair at UC Berkeley and is a member of the Kavli Energy NanoSciences Institute at Berkeley (Kavli ENSI), is the corresponding author of a paper describing this research in the journal Nature Materials. The paper is titled "Predicting nonlinear properties of metamaterials from the linear response." The other authors are Kevin O'Brien, Haim Suchowski, Junsuk Rho, Alessandro Salandrino, Boubacar Kante and Xiaobo Yin.

The unique electromagnetic properties of metamaterials stem from their physical structure rather than their chemical composition. This structure, for example, provides certain metamaterials with a negative refractive index, an optical property in which the phase front of light moving through a material propagates backward towards the source. The phase front light moving through natural materials always propagates forward, away from its source.

Zhang and his group have already exploited the linear optical properties of metamaterials to create the world's first optical invisibility cloak and mimic black holes.

Most recently they used a nonlinear metamaterial with a refractive index of zero to generate "phase mismatch-free nonlinear light," meaning light waves moved through the material gaining strength in all directions. However, engineering nonlinear metamaterials remains in its infancy, with no general conclusion on the relationship between linear and nonlinear properties.

For the past several decades, scientists have estimated the nonlinear optical properties in natural crystals using a formulation known as "Miller's rule," for the physicist Robert Miller who authored it. In this new study, Zhang and his group found that Miller's rule doesn't work for a number of metamaterials. That's the bad news. The good news is that a nonlinear light scattering theory, developed for nanostructures by Dutch scientist Sylvie Roke, does.

"From the linear properties, one calculates the nonlinear polarization and the mode of the nanostructure at the second harmonic," says Kevin O'Brien, co-lead author of the Nature Materials paper and a member of Zhang's research group.

"We found the nonlinear emission is proportional to the overlap integral between these, not simply determined by their linear response."

Zhang, O'Brien, Suchowski, and the other contributors to this study evaluated Miller's rule and the nonlinear light scattering theory by comparing their predictions to experimental results obtained using a nonlinear stage-scanning confocal microscope.

"Nonlinear stage-scanning confocal microscopy is critical because it allows us to rapidly measure the nonlinear emission from thousands of different nanostructures while minimizing the potential systematic errors, such as intensity or beam pointing variations, often associated with tuning the wavelength of an ultrafast laser," O'Brien says.

The researchers used confocal microscopy to observe the second harmonic generation from metamaterial arrays whose geometry was gradually shifted from a symmetric bar-shape to an asymmetric U-shape. Second harmonic light is a nonlinear optical property in which photons with the same frequency interact with a nonlinear material to produce new photons at twice the energy and half the wavelength of the originals. It was the discovery of optical second harmonic generation in 1961 that started modern nonlinear optics.

"Our results show that nonlinear scattering theory can be a valuable tool in the design of nonlinear metamaterials not only for second-order but also higher order nonlinear optical responses over a broad range of wavelengths," O'Brien says. "We're now using these experimental and theoretical techniques to explore other nonlinear processes in metamaterials, such as parametric amplification and entangled photon generation."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
DOE/Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Lower-cost metal 3-D printing solution available
New Rochelle NY (SPX) Feb 15, 2015
3D printing of plastic parts to prototype or manufacture goods is becoming commonplace in industry, but there is an urgent need for lower-cost 3D printing technology to produce metal parts. New substrate release solutions that offer easy, less expensive alternatives to aluminum parts removal during gas metal arc weld 3D printing are described in an article in 3D Printing and Additive Manuf ... read more


TECH SPACE
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

TECH SPACE
The highest plume ever observed on Mars

Mars One cuts list of potential colonists to 100

Mystery Mars plume baffles scientists

Up, Up and Away! First Humans Chosen for Mission to Mars

TECH SPACE
The ISS Menu: Mayo, Espressos, Booze? Cosmonauts Reveal Their Secrets

Sensors Detect Icing Conditions to Help Protect Airplanes

Industry: Risk aversion costs more than 'fast failure'

Boeing's Space Efforts to Be Managed by Newly Created Organization

TECH SPACE
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

TECH SPACE
Spacesuit woes haunt NASA ahead of crucial spacewalks

Russia Launches Fresh Fruit, Oxygen to Crew on ISS

Space Station 3-D Printed Items, Seedlings Return in the Belly of a Dragon

NASA preparing to reassemble International Space Station

TECH SPACE
Moog offers "SoftRide" for enhanced spacecraft protection during launch

Russian-Ukrainian Satan Rocket to Launch South Korean Satellite as Planned

Leaders share messages, priorities at AFA Symposium

Soyuz Installed at Baikonur, Expected to Launch Wednesday

TECH SPACE
Laser 'ruler' holds promise for hunting exoplanets

The mystery of cosmic oceans and dunes

Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

TECH SPACE
Arachnid Rapunzel: Researchers spin spider silk proteins into artificial silk

Breakthrough may lead to industrial production of graphene devices

New design tool for metamaterials

New self-stretching material developed at University of Rochester




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.