Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




EARLY EARTH
New data challenge old views about evolution of early life
by Staff Writers
Riverside CA (SPX) Dec 28, 2012


Eukaryotes have increasingly incorporated zinc-binding structures during the last third of their evolutionary history and still employ both early- and late-evolving zinc-binding protein structures.

A research team led by biogeochemists at the University of California, Riverside has tested a popular hypothesis in paleo-ocean chemistry, and proved it false. The fossil record indicates that eukaryotes - single-celled and multicellular organisms with more complex cellular structures compared to prokaryotes, such as bacteria - show limited morphological and functional diversity before 800-600 million years ago.

Many researchers attribute the delayed diversification and proliferation of eukaryotes, which culminated in the appearance of complex animals about 600 million years ago, to very low levels of the trace metal zinc in seawater.

As it is for humans, zinc is essential for a wide range of basic cellular processes. Zinc-binding proteins, primarily located in the cell nucleus, are involved in the regulation of gene transcription.

Eukaryotes have increasingly incorporated zinc-binding structures during the last third of their evolutionary history and still employ both early- and late-evolving zinc-binding protein structures. Zinc is, therefore, of particular importance to eukaryotic organisms. And so it is not a stretch to blame the 1-2-billion-year delay in the diversification of eukaryotes on low bioavailability of this trace metal.

But after analyzing marine black shale samples from North America, Africa, Australia, Asia and Europe, ranging in age from 2.7 billion years to 580 million years old, the researchers found that the shales reflect high seawater zinc availability and that zinc concentrations during the Proterozoic (2.5 billion to 542 million years ago) were similar to modern concentrations. Zinc, the researchers posit, was never biolimiting.

Study results appear in Nature Geoscience.

"We argue that the concentration of zinc in ancient marine black shales is directly related to the concentrations of zinc in seawater and show that zinc is abundant in these rocks throughout Earth's history," said Clint Scott, the first author of the research paper and a former UC Riverside graduate student. "We found no evidence for zinc biolimitation in seawater."

Scott, now a research geologist with the U.S. Geological Survey, explained that the connection between zinc limitation and the evolution of eukaryotes was based largely on the hypothesis that Proterozoic oceans were broadly sulfidic. Under broadly sulfidic conditions, zinc should have been scarce because it would have rapidly precipitated in the oceans, he explained.

"However, a 2011 research paper in Nature also published by our group at UCR demonstrated that Proterozoic oceans were more likely broadly ferruginous - that is, low in oxygen and iron-rich - and that sulfidic conditions were more restricted than previously thought," said Scott, who performed the research in the lab of Timothy Lyons, a professor of biogeochemistry and the principal investigator of the research project.

The research team argues that ferruginous deep oceans, combined with large hydrothermal fluxes of zinc via volcanic activity on the seafloor, maintained high levels of dissolved zinc throughout the oceans and provided a relatively stable marine reservoir of the trace metal over the past 2.7 billion years.

"The key challenge in understanding the early evolution of life is recognizing the environmental conditions under which that life first appeared and diversified," Lyons said.

"We have taken a very direct approach that specifically tracks the availability of essential micronutrients, and, to our surprise, zinc supplies in ancient seawater were much higher and less variable than previously imagined.

"We can imagine for the first time," he quipped, "that zinc supplements were not on the shopping lists of our early eukaryotic ancestors, and so we better find another reason to explain the mysterious delay in their rise in the ocean."

Scott, who graduated with a doctoral degree in geological sciences from UCR in 2009, and Lyons were joined in the study by Noah J. Planavsky, a former UCR graduate student in Lyons' lab; Chris L. Dupont at the J. Craig Venter Institute, La Jolla, Calif.; Brian Kendall and Ariel D. Anbar at Arizona State University; Benjamin C. Gill at Virginia Polytechnic Institute and State University and also a former member of the Lyons lab; Leslie J. Robbins and Kurt O. Konhauser at the University of Alberta, Canada; Kathryn F. Husband and Simon W. Poulton at the University of Leeds, United Kingdom; Gail L. Arnold at the Max Planck Institute for Marine Microbiology, Germany; Boswell A. Wing at McGill University, Canada; and Andrey Bekker at the University of Manitoba, Canada. The idea for the study was a direct consequence of the 2011 Nature paper by Planavsky, Scott, Lyons and others that challenged the hypothesis of broadly sulfidic oceans.

.


Related Links
University of California - Riverside
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
Ups and downs of biodiversity after mass extinction
Zurich, Switzerland (SPX) Dec 27, 2012
The climate after the largest mass extinction so far 252 million years ago was cool, later very warm and then cool again. Thanks to the cooler temperatures, the diversity of marine fauna ballooned, as paleontologists from the University of Zurich have reconstructed. The warmer climate, coupled with a high CO2 level in the atmosphere, initially gave rise to new, short-lived species. In the ... read more


EARLY EARTH
Russia designs manned lunar spacecraft

GRAIL Lunar Impact Site Named for Astronaut Sally Ride

NASA probes crash into the moon

No plans of sending an Indian on moon

EARLY EARTH
Russia May Join ExoMars Project in Q1 2013

Working Through the Holidays

Clays on Mars: More Plentiful Than Expected

Opportunity For Some Shoulder Workout At Copper Cliff

EARLY EARTH
NASA Puts Orion Backup Parachutes to the Test

White House to honor scientists, inventors

TDRS-K Arrives at Kennedy for Launch Processing

Sierra Nevada Corporation Selected by NASA to Receive Human Spaceflight Certification Products Contract

EARLY EARTH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

EARLY EARTH
New ISS crew docked at Space Station

Expedition 34 Spends Christmas in Space

Three astronauts blast off for ISS in Russian craft

Soyuz rocket brings trio to space station

EARLY EARTH
Investigation into Proton Launch Anomaly Continues as Root Cause is being Evaluated

Ariane 5 ECA orbits Skynet 5D and Mexsat Bicentenario satellites

Payload integration complete for final 2012 Ariane 5 mission

Arctic town eyes future as Europe's gateway to space

EARLY EARTH
Spiral Structure of Disk May Reveal Planets

Closest sun-like star may have planets

Nearby star is good candidate for Earth-like planets

Venus transit and lunar mirror could help astronomers find worlds around other stars

EARLY EARTH
Liquid crystal research, future applications advance

US probes HP's Autonomy fraud allegations

UKube-1 Signs up for Launch and Completes Thermal Vacuum Testing

China sets first-half rare earth export quota for 2013




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement