Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
New class of stellar explosions found
by Staff Writers
Pasadena CA (SPX) Jun 09, 2011


File image.

They're bright and blue-and a bit strange. They're a new type of stellar explosion that was recently discovered by a team of astronomers led by the California Institute of Technology (Caltech). Among the most luminous in the cosmos, these new kinds of supernovae could help researchers better understand star formation, distant galaxies, and what the early universe might have been like.

"We're learning about a whole new class of supernovae that wasn't known before," says Robert Quimby, a Caltech postdoctoral scholar and the lead author on a paper to be published in the June 9 issue of the journal Nature. In addition to finding four explosions of this type, the team also discovered that two previously known supernovae, whose identities had baffled astronomers, also belonged to this new class.

Quimby first made New class of stellar explosions founds in 2007 when-as a graduate student at the University of Texas, Austin-he discovered what was then the brightest supernova ever found: 100 billion times brighter than the sun and 10 times brighter than most other supernovae.

Dubbed 2005ap, it was also a little odd. For one thing, its spectrum-the chemical fingerprint that tells astronomers what the supernova is made of, how far away it is, and what happened when it blew up-was unlike any seen before. It also showed no signs of hydrogen, which is commonly found in most supernovae.

At around the same time, astronomers using the Hubble Space Telescope discovered a mysterious supernova called SCP 06F6. This supernova also had an odd spectrum, though there was nothing that indicated this cosmic blast was similar to 2005ap.

Shri Kulkarni, Caltech's John D. and Catherine T. MacArthur Professor of Astronomy and Planetary Science and a coauthor on the paper, recruited Quimby to become a founding member of the Palomar Transient Factory (PTF). The PTF is a project that scans the skies for flashes of light that weren't there before-flashes that signal objects called transients, many of which are supernovae.

As part of the PTF, Quimby and his colleagues used the 1.2-meter Samuel Oschin Telescope at Palomar Observatory to discover four new supernovae. After taking spectra with the 10-meter Keck telescopes in Hawaii, the 5.1-meter telescope at Palomar, and the 4.2-meter William Herschel Telescope in the Canary Islands, the astronomers discovered that all four objects had an unusual spectral signature.

Quimby then realized that if you slightly shifted the spectrum of 2005ap-the supernova he had found a couple of years earlier-it looked a lot like these four new objects. The team then plotted all the spectra together. "Boom-it was a perfect match," he recalls.

The astronomers soon determined that shifting the spectrum of SCP 06F6 similarly aligned it with the others. In the end, it turned out that all six supernovae are siblings, and that they all have spectra that are very blue-with the brightest wavelengths shining in the ultraviolet.

According to Quimby, the two mysterious supernovae-2005ap and SCP 06F6-had looked different from one another because 2005ap was 3 billion light-years away while SCP 06F6 was 8 billion light-years away. More distant supernovae have a stronger cosmological redshift, a phenomenon in which the expanding universe stretches the wavelength of the emitted light, shifting supernovae spectra toward the red end.

The four new discoveries, which had features similar to 2005ap and SCP 06F6, were at an intermediate distance, providing California Institute of Technology
that connected the two previously unexplained supernovae. "That's what was most striking about this-that this was all one unified class," says Mansi Kasliwal, a Caltech graduate student and coauthor on the Nature paper.

Even though astronomers now know these supernovae are related, no one knows much else. "We have a whole new class of objects that can't be explained by any of the models we've seen before," Quimby says.

What we do know about them is that they are bright and hot-10,000 to 20,000 degrees Kelvin; that they are expanding rapidly at 10,000 kilometers per second; that they lack hydrogen; and that they take about 50 days to fade away-much longer than most supernovae, whose luminosity is often powered by radioactive decay. So there must be some other mechanism that's making them so bright.

One possible model that would create an explosion with these properties involves a pulsating star about 90 to 130 times the mass of the sun. The pulsations blow off hydrogen-free shells, and when the star exhausts its fuel and explodes as a supernova, the blast heats up those shells to the observed temperatures and luminosities.

A second model requires a star that explodes as a supernova but leaves behind what's called a magnetar, a rapidly spinning dense object with a strong magnetic field. The rotating magnetic field slows the magnetar down as it interacts with the sea of charged particles that fills space, releasing energy. The energy heats the material that was previously blown off during the supernova explosion and can naturally explain the brightness of these events.

The newly discovered supernovae live in dim, small collections of a few billion stars called dwarf galaxies. (Our own Milky Way has 200-400 billion stars.) The supernovae, which are almost a hundred times brighter than their host galaxies, illuminate their environments like distant street lamps lighting up dark roads.

They work as a kind of backlight, enabling astronomers to measure the spectrum of the interstellar gas that fills the dwarf galaxies in which the supernovae reside, and revealing each galaxy's composition. Once an observed supernova fades a couple of months later, astronomers can directly study the dwarf galaxy-which would have remained undetected if it weren't for the supernova.

These supernovae could also reveal what ancient stars might have been like, since they most likely originate from stars around a hundred times more massive than the sun-stars that would have been very similar to the first stars in the universe.

"It is really amazing how rich the night sky continues to be," Kulkarni says. "In addition to supernovae, the Palomar Transient Factory is making great advances in stellar astronomy as well."

.


Related Links
California Institute of Technology
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Weizmann Institute Observatory Captures Images of a New Supernova
Rehovot, Israel (SPX) Jun 07, 2011
Exploding stars are the "factories" that produce all the heavy elements found, among other places, in our bodies. In this sense, we are all stardust. These exploding stars - supernovae - are highly energetic events that can occasionally light up the night sky. Such an explosion generally involves disruption in the balance between gravity - which pulls the star's material inward - and the thermon ... read more


STELLAR CHEMISTRY
NASA Releases New Lunar Eclipse Video

The Power of A Moon Rock

Looking at the volatile side of the Moon

Parts of moon interior as wet as Earth's upper mantle

STELLAR CHEMISTRY
New solar system formation models indicate that Jupiter's foray robbed Mars of mass

Opportunity Studies Rock Outcrop

A Salute to the Spirit of Mars

One year in isolation

STELLAR CHEMISTRY
Solar system edge 'bunches' in magnetic bubbles: NASA

NASA Spending Shift to Benefit Centers Focused on Science and Technology

Japan's next gizmo: brainwave-controlled cat ears

FOGE Reaches 10

STELLAR CHEMISTRY
Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

Venezuela, China to launch satellite next year

Top Chinese scientists honored with naming of minor planets

STELLAR CHEMISTRY
Soyuz heads to ISS carrying Russian, US, Japanese astronauts

Soyuz heads to ISS carrying Russian, US, Japanese astronauts

New Crew Members Prepare for Launch

ATV-2 adjusts ISS orbit; ext TMA Soyuz assembled

STELLAR CHEMISTRY
Shipments Of Sea Launch Zenit-3Sl Hardware Resume On Schedule

US Army supports student launch program

Boeing Opens Exploration Launch Systems Office in Florida

Payload processing underway for ASTRA 1N

STELLAR CHEMISTRY
Rage Against the Dying of the Light

Second Rocky World Makes Kepler-10 a Multi-Planet System

Kepler's Astounding Haul of Multiple-Planet Systems Just Keeps Growing

Bennett team discovers new class of extrasolar planets

STELLAR CHEMISTRY
HP's TouchPad going on sale in US on July 1

Greenpeace warns of radiation risk to Japan children

Chinalco sets up rare earths processing firm

Apple takes a giant leap into the 'iCloud' cloud




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement