Subscribe free to our newsletters via your
. 24/7 Space News .




EARTH OBSERVATION
New approach alters malaria maps
by Staff Writers
University Park PA (SPX) Feb 26, 2013


When looking at all of Africa, the area in and around the equator has similar EIP measurements regardless of the method used. However, there are areas in Africa where current methods over or under estimate EIP by 100 percent or more.

Identifying areas of malarial infection risk depends more on daily temperature variation than on the average monthly temperatures, according to a team of researchers, who believe that their results may also apply to environmentally temperature-dependent organisms other than the malaria parasite.

"Temperature is a key driver of several of the essential mosquito and parasite life history traits that combine to determine transmission intensity, including mosquito development rate, biting rate, development rate and survival of the parasite within the mosquito," said Justine I. Blanford, research associate in geography, Penn State's the Geovista Center.

While other variables, such as the necessary rainfall to support mosquito development, also influence malaria transmission, temperature controls a variety of lifestages of both the mosquito and the malaria parasite.

The Penn State researchers include Blanford; Simon Blanford, senior research associate in biology; Robert G. Crane, professor of geography and director of Penn State's Alliance for Education, Science, Engineering and Development in Africa; Michael Mann, Distinguished Professor of Meteorology; Krijn P. Paaijmans, post doctoral researcher; and Matthew Thomas, professor in ecological entomology and Center for Infectious Disease Dynamics; and Kathleen V. Schreiber, professor of geography, Millersville University of Pennsylvania.

The researchers first looked at four locations in Kenya that represented four different climates, including warm arid conditions and cool upland conditions. They looked specifically at the Extrinsic Incubation Period, the length of time it takes for a parasite to complete development inside a mosquito from initial acquisition through an infected blood meal to transmission to a host via another blood meal. The researchers published their results in the current issue of Scientific Reports.

They found that EIP measurements based on mean monthly temperatures and mean daily temperatures were similar to each other in all cases. For the measurements based on hourly temperatures, the researchers found that for warmer locations, the EIPs were significantly longer. For cooler locations, the EIPs were substantially shorter than those calculated using mean monthly or mean daily temperatures.

"To estimate 'true' EIP we need to capture the influence of daily temperature fluctuations using hourly temperature data," said Justine Blanford. "But hourly temperature data does not exist for all locations in Kenya or across Africa."

The researchers estimated hourly temperatures using data on minimum monthly and maximum monthly temperatures. This does not equal the hourly temperatures but can be compared to the mean monthly temperatures usually used to determine malaria risk. This estimation method compared well with the data from the four Kenyan locations.

Applying this method to other locations in Kenya, they found that "mean temperatures overestimate parasite development rate under warm conditions, provide a good approximation of growth under intermediate conditions and underestimate development under cool conditions."

When looking at all of Africa, the area in and around the equator has similar EIP measurements regardless of the method used. However, there are areas in Africa where current methods over or under estimate EIP by 100 percent or more.

"The vast majority of ecological studies examining temperature-dependent effects consider mean temperature alone," said Justine Blanford.

According to the researchers, daily temperature dynamics could have marked effects on many species, affecting understanding of both current ecology and the expected responses to future climate change.

.


Related Links
Penn State
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
Tiny CREPT Instrument to Study the Radiation Belts
Greenbelt MD (SPX) Feb 19, 2013
A smaller version of an instrument now flying on NASA's Van Allen Probes has won a coveted spot aboard an upcoming NASA-sponsored Cubesat mission - the perfect platform for this pint-size, solid-state telescope. Weighing just 3.3 pounds, the Compact Relativistic Electron and Proton Telescope (CREPT) will "augment the science of a major flagship mission" and demonstrate the effectiveness of ... read more


EARTH OBSERVATION
Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

EARTH OBSERVATION
Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

Big Nickel Rock Target Ahead

NASA Rover Confirms First Drilled Mars Rock Sample

EARTH OBSERVATION
Choreographed to Perfection

ATK Launch Abort Motor For First Orion Test Vehicle

Supersonic skydiver's records confirmed

Kennedy Engineers Designing Plant Habitat For ISS

EARTH OBSERVATION
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

EARTH OBSERVATION
Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

EARTH OBSERVATION
SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

India's 102nd space mission lifts off successfully

Countdown begins for Indo-French satellite launch

EARTH OBSERVATION
NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

Earth-like planets are right next door

EARTH OBSERVATION
Tokyo hotel shrinks in new-style urban demolition

Fluids in Space, Shaken Not Stirred

The world's most sensitive plasmon resonance sensor inspired by ancient Roman cup

Sustainable new catalysts fueled by a single proton




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement