Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
New aluminum alloy stores hydrogen
by Staff Writers
Washington DC (SPX) Nov 08, 2013


This is a schematic of the hydrogenation reaction process of the newly developed hydride Al2CuHx. Credit: H. Saitoh /JAEA.

We use aluminum to make planes lightweight, store sodas in recyclable containers, keep the walls of our homes energy efficient and ensure that the Thanksgiving turkey is cooked to perfection. Now, thanks to a group of Japanese researchers, there may soon be a new application for the versatile metal: hydrogen storage for fuel cells.

Lightweight interstitial hydrides -- compounds in which hydrogen atoms occupy the interstices (spaces) between metal atoms -- have been proposed as a safe and efficient means for storing hydrogen for fuel cell vehicles. Hydrides using magnesium, sodium and boron have been manufactured, but so far, none have proven practical as a hydrogen repository.

An aluminum-based alloy hydride offers a more viable candidate because it has the desired traits of light weight, no toxicity to plants and animals, and absence of volatile gas products except for hydrogen. Until now, however, only complex aluminum hydrides -- unsuitable for use as a hydrogen storage system -- have been created.

In a recent paper in the AIP Publishing journal APL Materials, a joint research group with members from the Japan Atomic Energy Agency (Hyogo, Japan) and Tohoku University (Sendai, Japan) announced that it had achieved the long-sought goal of a simple-structured, aluminum-based interstitial alloy.

Their compound, Al2CuHx, was synthesized by hydrogenating Al2Cu at an extreme pressure of 10 gigapascals (1.5 million pounds per square inch) and a high temperature of 800 degrees Celsius (1,500 degrees Fahrenheit).

The researchers characterized the conditions of the hydrogenation reaction using in-situ synchrotron radiation X-ray diffraction measurement, while the crystal and electron structures of the compound formed were studied with powder X-ray diffraction measurement and first-principle calculations, respectively. Together, these examinations confirmed the first-ever formation of an interstitial hydride of an aluminum-based alloy.

"Although its synthesis requires very extreme conditions and its hydrogen content is low, our new compound showed that an aluminum-based alloy hydride is achievable," said Hiroyuki Saitoh, lead author of the APL Materials paper.

"Based on what we've learned from this first step, we plan to synthesize similar materials at more moderate conditions -- products that hopefully will prove to be very effective at storing hydrogen."

The article, "Synthesis and formation process of Al2CuHx: A new class of interstitial aluminum-based alloy hydride" is authored by Hiroyuki Saitoh, Shigeyuki Takagi, Naruki Endo, Akihiko Machida, Katsutoshi Aoki, Shin-ichi Orimo and Yoshinori Katayama. It appears in the journal APL Materials.

.


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Aluminum alloy can store hydrogen, could be fuel cell material
Tokyo (UPI) Nov 5, 2013
A new alloy of aluminum that can store hydrogen could open the door to lightweight, efficient fuel cells of the future, Japanese researchers say. Lightweight interstitial hydrides - compounds in which hydrogen atoms occupy the interstices (spaces) between metal atoms - have been put forward as a safe and efficient means for storing hydrogen for fuel cell vehicles. While hydrides based ... read more


ENERGY TECH
Moon mission yields clues to face of 'man in the moon'

Shanghai-built lunar rover set for lunar landing

Crowdfunded Lunar Spacecraft Reaches Funding Milestone

LADEE Continues To Settle Into Operational Lunar Orbit

ENERGY TECH
Curiosity Team Working To Understand First Fault Related Warm Reset

Multiple Missions Will Get China Moving On Mars

Mythbusting India's Mars Mission

India reaches for Mars on prestige space mission

ENERGY TECH
UCF Lands NASA-Funded Center, Linchpin for Future Space Missions

NASA Selects Research Teams for New Virtual Institute

From North Pole to the stars: Russia's thrill-seeking tycoon

A look at recent tech sector IPOs

ENERGY TECH
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

ENERGY TECH
Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

Mission accomplished for Europe's cargo freighter

ENERGY TECH
ASTRA 5B lands in French Guiana for its upcoming Ariane 5 flight

Kazakhstan say Baikonur launch site may be open to Western countries

ESA Swarm launch postponed

Europe's fifth ATV for launch by Arianespace begins its pre-flight checkout at the Spaceport

ENERGY TECH
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

ENERGY TECH
Highly stable quantum light source for applications in quantum information systems

Quantum 'sealed envelope' system enables 'perfectly secure' information storage

London Metal Exchange announces warehouse shake-up

Monkeys use minds to move two virtual arms




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement