Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
New Tidal Streams Found In Andromeda Reveal Galactic Merger History
by Staff Writers
Washington DC (SPX) Jan 08, 2010


The traditional view of the Andromeda galaxy (above) shows only its bright bulge and inner disk, extending to about 65,000 light years from the galaxy's center. The stellar halo in which new tidal streams were found extends more than 500,000 light years from the center.

An international team of astronomers has identified two new tidal streams in the Andromeda galaxy, the remnants of dwarf galaxies consumed by our large galactic neighbor.

Analysis of the stars in Andromeda's tidal streams and other components of its extended halo is yielding new insights into the processes involved in the formation and evolution of massive galaxies, said Puragra Guhathakurta, professor of astronomy and astrophysics at the University of California, Santa Cruz.

Guhathakurta's team presented the latest results from studies of the newly discovered tidal streams at the 215th meeting of the American Astronomical Society in Washington, D.C.

In the currently favored "Lambda Cold Dark Matter" paradigm of structure formation in the universe, the outer halos of large galaxies like our Milky Way galaxy and the neighboring Andromeda galaxy (also known as M31) are built up through the merger and dissolution of smaller "dwarf" satellite galaxies. "This process of galactic cannibalism is an integral part of the growth of galaxies," Guhathakurta said.

The smooth, well-mixed population of halo stars in these large galaxies represents the aggregate of the dwarf galaxy victims of this cannibalism process, while the dwarf galaxies that are still intact as they orbit their large parent galaxy are the survivors of this process.

"The merging and dissolution of a dwarf galaxy typically lasts for a couple billion years, so one occasionally catches a large galaxy in the act of cannibalizing one of its dwarf galaxy satellites," Guhathakurta said.

"The characteristic signature of such an event is a tidal stream: an enhancement in the density of stars, localized in space and moving as a coherent group through the parent galaxy."

Tidal streams are important because they represent a link between the victims and survivors of galactic cannibalism--an intermediate stage between the population of intact dwarf galaxies and the well-mixed stars dissolved in the halo.

The Andromeda galaxy is a unique test bed for studying the formation and evolution of a large galaxy, said Guhathakurta, who leads the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) collaboration, a large survey of red giant stars in Andromeda.

"Our external vantage point gives us a global perspective of the galaxy, and yet the galaxy is close enough for us to obtain detailed measurements of individual red giant stars within it," he said.

In a project led by collaborators Mikito Tanaka and Masashi Chiba of Tohoku University, Japan, the researchers used the Subaru 8-meter telescope and Suprime-Cam camera to map the density of red giant stars in large portions of the Andromeda galaxy, including the hitherto uncharted north side.

This led to the discovery of two tidal streams to the northwest (streams E and F) at projected distances of 60 and 100 kiloparsecs (200,000 and 300,000 light years) from Andromeda's center.

The study also confirmed a few previously known streams, including the little-studied diffuse stream to the southwest (stream SW), which lies at a projected distance of 60 to 100 kiloparsecs (200,000 to 300,000 light years) from Andromeda's center.

The SPLASH team has followed up with a spectroscopic survey of several hundred red giant stars in Streams E, F, and SW, using the Keck II 10-meter telescope and DEIMOS spectrograph at the W. M. Keck Observatory in Hawaii.

The spectrograph spreads out the light from each star into a spectrum, which allows astronomers to measure the velocity of the star and distinguish Andromeda red giant stars from foreground stars in the Milky Way. The spectral data confirmed the presence of coherent groups of Andromeda red giant stars moving with a common velocity.

One of the next steps will be to measure the detailed chemical properties of red giant stars in these newly discovered tidal streams in Andromeda. Comparing the chemical properties of tidal streams, intact dwarf satellites, and the smooth halo will be of particular significance, Guhathakurta said.

Complex elements such as iron, magnesium, and calcium in the outer layers of a red giant star were produced within previous generations of massive stars that ended their lives as supernova explosions, spewing out newly forged elements into the interstellar medium.

Thus, the fraction of complex elements found in stars indicates the degree to which the host galaxy's gas (the raw material from which new stars are formed) was enriched by supernova explosions from successive generations of massive stars.

"Massive galaxies like the Milky Way and Andromeda are very effective at recycling chemicals and therefore contain stars like our Sun that are relatively rich in complex elements--rich enough for rocky planets to have formed and for those planets to contain complex molecules such as proteins," Guhathakurta said.

Dwarf galaxies are less effective at recycling chemicals than massive galaxies. This is partly because the weaker gravity of a dwarf galaxy makes it harder for it to retain the chemically enriched gas that is blown out of massive stars during supernova explosions.

As a result, stars in dwarf galaxies are more anemic (have a smaller fraction of complex elements) than those in the interior of massive galaxies. Moreover, the action of merging with a larger galaxy causes a dwarf galaxy to lose its gas, breaking the chemical cycle altogether.

"Dwarf galaxy cannibalism victims have had less time to recycle their chemicals than dwarf galaxy survivors, and this should be reflected as a difference between their chemical properties," Guhathakurta said. "Tidal streams should be somewhere between the victims and the survivors in terms of their chemical properties."

At the present time, detailed studies of the chemical properties of tidal streams, intact dwarf satellites, and smooth stellar halos are possible only in the Milky Way and Andromeda galaxies and their immediate surroundings.

Existing telescopes and instruments are simply not powerful enough for astronomers to carry out such studies in more distant galaxies. This situation will improve greatly with the advent of the planned Thirty Meter Telescope later in this decade, Guhathakurta said.

In addition to the UCSC and Tohoku University researchers, this study involved SPLASH collaboration team members at the University of Virginia, UC Irvine, University of Massachusetts, Yale University, University of Washington, National Astronomical Observatory of Japan, Columbia University, NASA's Space Telescope Science Institute (STScI), and California Institute of Technology. This research was supported by the National Science Foundation and NASA/STScI.

.


Related Links
University of California, Santa Cruz
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Why Won't the Supernova Explode
Huntsville AL (SPX) Jan 08, 2010
A massive old star is about to die a spectacular death. As its nuclear fuel runs out, it begins to collapse under its own tremendous weight. The crushing pressure inside the star skyrockets, triggering new nuclear reactions, setting the stage for a terrifying blast. And then... nothing happens. At least that's what supercomputers have been telling astrophysicists for decades. Many of the b ... read more


STELLAR CHEMISTRY
Space Systems Loral To Supply Lunar Mission Propulsion System

Lava tube could house moon colony

Moon Mission In Running For Next Big Space Venture

Obama cuts moon travel, links NASA to private firms

STELLAR CHEMISTRY
Opportunity Examinines 'Marquette Island's' Interior

Minimal Progress In Recent Extraction Drives

Goddard Scientist Breakthrough Given Ticket To Mars

Mars Spirit Rover Facing End Of Mission Decision

STELLAR CHEMISTRY
Galactic GPS Possible With Pulsars And Gravity Waves

US still has space ambitions: NASA chief

Chairman Gordon Comments On President's Budget Request

South Korea to send its cuisine into space

STELLAR CHEMISTRY
China Building Large Radio Telescope For Space Observation

China To Launch Civil HD Survey Satellite In 2011

China Launches First Public-Welfare Mini Satellite

Chang'e-1 Has Blazed A New Trail In China's Deep Space Exploration

STELLAR CHEMISTRY
How To Live Long And Prosper In Space

Russia Set To Launch Another Space Truck To ISS

Obama budget extends US commitment to space station

Mini-Research Module MRM1 At Cape For Shuttle Processing

STELLAR CHEMISTRY
Arianespace Poised For 2010 Boost

Booz Allen Hamilton To Transform LA Spacelift Range

Apron Construction Contract Awarded For Spaceport America

Shuttle-Derived Vehicle: Shuttle-Derived Disaster

STELLAR CHEMISTRY
Second Smallest Exoplanet Found To Date Discovered At Keck

Massive Stars Easy Targets For Planet Hunters

Most Earth-Like Exoplanet Started Out As A Gas Giant

Sun Glints Seen From Space Signal Oceans And Lakes

STELLAR CHEMISTRY
Plastic Logic aims QUE e-reader at business crowd

XMM-Newton Sensors Celebrate A Decade Of Discovery

3-D TV a rage at Consumer Electronics Show

Toshiba TV adds third dimension to video viewing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement