Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
New NIST measurement tool is on target for the fast-growing MEMS industry
by Staff Writers
Washington DC (SPX) May 09, 2013


New NIST Reference Materials for MEMS devices are micromachined and further processed to contain miniature cantilevers, beams, stair-like step heights, microscale rulers and test structures for measuring surface-layer thickness. On the left is RM 8096, which was manufactured with an integrated circuit process; on the left is RM 8097, made with a MEMS process. Credit: NIST.

As markets for miniature, hybrid machines known as MEMS grow and diversify, the National Institute of Standards and Technology (NIST) has introduced a long-awaited measurement tool that will help growing numbers of device designers, manufacturers and customers to see eye to eye on eight dimensional and material property measurements that are key to device performance.

The NIST-developed test chips (Reference Materials 8096 and 8097) are quality assurance tools that enable accurate, reliable comparisons of measurements on MEMS (MicroElectroMechanical Systems) devices made with different equipment and by different labs or companies. These capabilities will make it easier to characterize and troubleshoot processes, calibrate instruments and communicate among partners.

MEMS were once considered a stepchild of the semiconductor industry and largely confined to automotive uses-primarily as accelerometers in airbag systems. But the devices have branched out into an array of applications, especially in consumer electronics markets.

A high-end smart phone, for example, contains about 10 such devices, including microphones, accelerometers and gyroscopes. MEMS devices also are important components of tablet computers, game consoles, lab-on-a-chip diagnostic systems, displays and implantable medical devices.

Global MEMS industry revenues are projected to grow from about $10 billion in 2011 to $21 billion in 2017, according to the June 2012 forecast by the technology consulting firm Yole Developpement.

Widely used reference materials and standardized measurement methods can help to improve process efficiency and to reduce the cost and time devoted to testing and inspecting MEMS devices. Industry-accepted measurements also can promote greater interoperability among devices made by different manufacturers.

The new NIST reference materials are micromachined and further processed to contain miniature cantilevers, beams, stair-like step heights, microscale rulers and test structures for measuring surface-layer thickness.

Specifically, the NIST test chips can be used to check customer conformity with internationally established standards for measuring elasticity (Young's modulus), residual strain (and stress), strain (and stress) gradient, as well as thickness, step height and length.

All dimensional and material-property measurements that NIST used to characterize the reference devices conform with SEMI and ASTM International standard test methods. These standard methods are consensus best practices developed by industry committees.

"Reference materials and best-practice test methods provide industry-wide benefits," explains NIST electronics engineer Janet Cassard.

"Typically, these tools are prohibitively expensive for a single company to develop on its own. We will work with the MEMS community to facilitate widespread adoption and consistent usage of these standard test methods and reference materials."

One test chip (RM 8096) is manufactured in an integrated circuit (IC) process; the other (RM 8097) in a MEMS process. The test chips are supported by a user's guide, data analysis sheets for each measurement, and other materials accessible via the NIST Data Gateway with the keyword "MEMS Calculator."

For more information, go here.

.


Related Links
National Institute of Standards and Technology (NIST)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Use of laser light yields versatile manipulation of a quantum bit
Santa Barbara CA (SPX) May 09, 2013
By using light, researchers at UC Santa Barbara have manipulated the quantum state of a single atomic-sized defect in diamond - the nitrogen-vacancy center - in a method that not only allows for more unified control than conventional processes, but is more versatile, and opens up the possibility of exploring new solid-state quantum systems. Their results are published in the latest edition of th ... read more


CHIP TECH
Northrop Grumman Completes Lunar Lander Study for Golden Spike Company

Scientists Use Laser to Find Soviet Moon Rover

Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

CHIP TECH
Austria Aims For Mars Via Morocco

And Now For The Weather On Mars

Opportunity Rover Back in Action

Buzz Aldrin says US must colonize Mars

CHIP TECH
Outside View: Patents laws and suffering innovators

Glow-in-the-Dark Plants on the ISS

Russia Confirms Plans to Send Sarah Brightman to Space

Success Continues as NASA's Orion Parachute Tests Get More Difficult

CHIP TECH
China launches communications satellite

On Course for Shenzhou 10

Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

CHIP TECH
The fourth Automated Transfer Vehicle is ready to meet up with its Ariane 5

NASA to pay Russia $424 mln more for lift into space

NASA Extends Crew Flight Contract with Russian Space Agency

Cargo spaceship docks with ISS despite antenna mishap

CHIP TECH
NASA Awards Contract to Modify Mobile Launcher

Angara Rocket Launch Delayed to 2014

ESA's Vega launcher scores new success with Proba-V

European Vega rocket launch delayed due to weather

CHIP TECH
The Great Exoplanet Debate

NASA's Spitzer Puts Planets in a Petri Dish

Two New Exoplanets Detected with Kepler, SOPHIE and HARPS-N

Astronomer studies far-off worlds through 'characterization by proxy'

CHIP TECH
Researcher Construct Invisibility Cloak for Thermal Flow

Engineers fine-tune the sensitivity of nano-chemical sensor

Giant 50-foot magnet to make cross-country trek for physics experiment

iGT Debuts Airborne Satcom Solutions for Secure Connectivity and Situational Awareness




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement