Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
New Effect Couples Electricity and Magnetism in Materials
by Staff Writers
Vienna, Austria (SPX) Dec 08, 2013


Prof. Andrei Pimenov in his Lab.

In magneto-electric materials, electric and magnetic vibrations can be coupled to "electromagnons". High hopes are placed on this technology, a breakthrough could now be achieved at the Vienna University of Technology (TU Wien).

Major industries such as modern microelectronics are based on the interaction between matter and electromagnetism. Electromagnetic signals can be processed and stored in specially tailored materials. In materials science, electric and magnetic effects have usually been studied separately.

here are, however, extraordinary materials called "multiferroics", in which electric and magnetic excitations are closely linked. Scientists at the Vienna University of Technology (TU Wien) have now shown in an experiment that magnetic properties and excitations can be influenced by an electric voltage. This opens up completely new possibilities for electronics at high frequencies.

The Best of Two Worlds
It has been well known for a long time that electricity and magnetism are two sides of the same coin. Waves in free space, such as visible light or mobile phone radiation, always consist of both an electric and a magnetic component.

When it comes to material properties, however, electricity and magnetism have been viewed as separate topics. There are materials with magnetic ordering, which react to magnetic fields, and there are materials with electric ordering, which can be influenced by electric fields.

A magnet has a magnetic field, but no electric field. In a piezoelectric crystal, on the other hand, electric fields can be generated, but no magnetic fields. Having both at the same time seemed impossible. "Usually, both effects are created in very different ways", says Professor Andrei Pimenov (TU Vienna). "Magnetic ordering comes from electrons aligning their magnetic moments, electric ordering comes from positive and negative charges moving with respect to one another."

Electromagnons
In 2006, Andrei Pimenov (while working at Augsburg University) found evidence of excitations which are based on both electric and magnetic ordering. These excitations, which have been dubbed "electromagnons", have been hotly debated by materials scientists ever since. Now Pimenov and his team have succeeded in switching such excitations on and off with an electric field in a special material made of dysprosium, manganese and oxygen (DyMnO3).

In this material, many electrons align their magnetic moments at low temperatures. Each electron has a magnetic direction which is slightly distorted with respect to the adjoining electron - therefore the electrons create spiral of magnetic moments. The spiral has two possible orientations - clockwise or counterclockwise - and, surprisingly, an external electric field can switch between these two possibilities.

Vibrating Atoms, Wobbling Moments
In magneto-electric materials, the charges and the magnetic moments of the atoms are connected. In dysprosium manganese oxide, this connection is particularly strong: "When the magnetic moments wobble, the electric charges move too", says Andrei Pimenov. In this material, magnetic moments and electric charges simultaneously play a part in the excitation, and therefore both can be influenced by one single external field.

The effect can be demonstrated by sending terahertz radiation through the material: The polarization of the terahertz beam is changed if the multiferroic material exhibits magnetic ordering. If the magnetic spiral in the material can be switched with an electric field, this electric field eventually determines, whether the polarization of the terahertz beam is being rotated.

There are many ideas for future applications: Wherever it is desirable to combine the respective advantages of magnetic and electric effects, the new magneto-electric materials could be used in the future. This could lead to new kinds of amplifiers, transistors or data storage devices. Also, highly sensitive sensors could be built with electromagnon technology.

.


Related Links
Vienna University of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Use of ancient lead in modern physics experiments ignites debate
Birmingham, England (UPI) Nov 29, 2013
Physicists and archaeologists are at odds over the use in contemporary experiments in particle physics of lead recovered from ancient shipwrecks. Scientists from a dark matter detection project in Minnesota and from a neutrino observatory in Italy have begun to use the specimens, but archaeologists have raised alarm about what they say is the destruction of cultural heritage artifacts. ... read more


TECH SPACE
China's most moon-like place

LADEE Instruments Healthy and Ready for Science

China launches first moon rover mission

Japanese firm describes proposed 'power belt' for the moon

TECH SPACE
MAVEN Performs First Trajectory Correction Maneuver

Opportunity Rover Robotic Arm Within Reach of Rock Outcrop

ExoMars program marks critical milestone for ESA and Russia

Deep Space Perils For Indian Spacecraft

TECH SPACE
300 million Chinese are potential visitors to France: Ayrault

Mixed reaction as US House passes patent reform

NASA Taps Student Teams to Simulate Human Exploration of Other Worlds

Moon gardens: NASA to sow first seeds of future habitat

TECH SPACE
Turkey keen on space cooperation with China

China space launch debris wrecks villagers' homes: report

Designer: moon rover uses cutting-edge technology

Commentary: Lunar probe boosts "Chinese dream"

TECH SPACE
Russian android may take on outer space operations at ISS

Repurposing ISS Trash for Power and Water

Russian spacecraft with advanced navigation system docks with ISS

Space freighter docks at International Space Station

TECH SPACE
Third time a charm: SpaceX launches commercial satellite

Arianespace's role as a partner for the US satellite industry

SpaceX postpones first satellite launch

Second rocket launch site depends on satellite size, cost-benefit

TECH SPACE
Astronomers find strange planet orbiting where there shouldn't be one

Hubble Traces Subtle Signals of Water on Hazy Worlds

Astronomers detect water in atmosphere of distant exoplanets

The State of Super Earths

TECH SPACE
Cloud firm Box raises $100 mn

Laser Communication Mission Targets 2017 Launch

New Effect Couples Electricity and Magnetism in Materials

Satellite Cooling System Breakthrough Developed by Lockheed Martin Space Systems




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement