Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
New Approach Advances Wireless Power Transfer for Vehicles
by Staff Writers
Raleigh NC (SPX) Nov 15, 2013


A small prototype serves as a proof of concept for the system. For a larger version of this image please go here.

Researchers from North Carolina State University have developed new technology and techniques for transmitting power wirelessly from a stationary source to a mobile receiver - moving engineers closer to their goal of creating highway "stations" that can recharge electric vehicles wirelessly as the vehicles drive by.

"We've made changes to both the receiver and the transmitter in order to make wireless energy transfer safer and more efficient," says Dr. Srdjan Lukic, an assistant professor of electrical engineering at NC State and senior author of a paper on the research.

The researchers developed a series of segmented transmitter coils, each of which broadcasts a low-level electromagnetic field. The researchers also created a receiver coil that is the same size as each of the transmitter coils, and which can be placed in a car or other mobile platform. The size of the coils is important, because coils of the same size transfer energy more efficiently.

The researchers modified the receiver so that when it comes into range and couples with a transmitter coil, that specific transmitter coil automatically increases its current - boosting its magnetic field strength and the related transfer of energy by 400 percent. The transmitter coil's current returns to normal levels when the receiver passes out of the range of the transmitter.

These modifications improve on previous mobile, wireless power transfer techniques.

One previous approach was to use large transmitter coils. But this approach created a powerful and imprecise field that could couple to the frame of a car or other metal objects passing through the field. Because of the magnetic field's strength, which is required to transfer sufficient power to the receiver, these electromagnetic field "leaks" raised safety concerns and reduced system efficiency.

Another previous approach used smaller transmitter coils, which addressed safety and efficiency concerns. But this approach would require a very large number of transmitters to effectively "cover" a section of the roadway, adding substantial cost and complexity to the system, and requiring very precise vehicle position detection technology.

"We tried to take the best from both of those approaches," Lukic says.

Lukic and his team have developed a small, functional prototype of their system, and are now working to both scale it up and increase the power of the system.

Currently, at peak efficiency, the new system can transmit energy at a rate of 0.5 kilowatts (kW). "Our goal is to move from 0.5 kW into the 50 kW range," Lukic says. "That would make it more practical."

The paper, "Reflexive Field Containment in Dynamic Inductive Power Transfer Systems," is published online in IEEE Transactions on Power Electronics. Lead author of the paper is NC State Ph.D. student Kibok Lee. The paper was co-authored by Dr. Zeljko Pantic, a former Ph.D. student at NC State. The research was partially supported by National Science Foundation grant number EEC-0812121.

.


Related Links
North Carolina State University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Sensor Suitcase Brings Energy Efficiency to Small Commercial Buildings
Berkeley CA (SPX) Nov 14, 2013
Most buildings in the U.S. don't perform as energy-efficiently as they could simply because energy-using equipment in the building have never been set up to maximize energy performance. Thermostat setpoints are too low or too high, so rooftop units (RTUs) cool buildings down below recommended temperatures, or keep them too warm (or both). Or, there is no difference in the setpoint during h ... read more


ENERGY TECH
NASA's GRAIL Mission Puts a New Face on the Moon

Moon mission yields clues to face of 'man in the moon'

Shanghai-built lunar rover set for lunar landing

Crowdfunded Lunar Spacecraft Reaches Funding Milestone

ENERGY TECH
Martian moon samples will have bits of Mars

NASA release 'tour' of ancient, wet Mars as YouTube video

Curiosity Out of Safe Mode

MAVEN Aims To Answer Where Did the Water on Mars Go

ENERGY TECH
NASA says new deep space vehicle on time for 2014 test

NASA's Orion Sees Flawless Fairing Separation in Second Test

Lockheed Martin Team Tests Orion's Protective Panels

UCF Lands NASA-Funded Center, Linchpin for Future Space Missions

ENERGY TECH
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

ENERGY TECH
Russians take Olympic torch on historic spacewalk

Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

ENERGY TECH
ASTRA 5B lands in French Guiana for its upcoming Ariane 5 flight

Kazakhstan say Baikonur launch site may be open to Western countries

ESA Swarm launch postponed

Europe's fifth ATV for launch by Arianespace begins its pre-flight checkout at the Spaceport

ENERGY TECH
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

ENERGY TECH
Protection Of Materials And Structures From Space Environment at ICPMSE 11

Snap to attention: Polymers that react and move to light

Altering surface textures in 'counterintuitive manner' may lead to cooling efficiency gains

Methane-munching microorganisms meddle with metals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement