Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Never-before-seen energy pattern observed at National High Magnetic Field Laboratory
by Staff Writers
Tallahassee FL (SPX) May 22, 2013


An artistic illustration of a butterfly departing from a graphene moire pattern formed on the top of an atomically thin boron nitride substrate. Electron energy in such graphene moire structures exhibit butterfly-like self-recursive fractal quantum spectrum. Illustration by James Hedberg for Columbia University.

Two research teams at the National High Magnetic Field Laboratory (MagLab) broke through a nearly 40-year barrier recently when they observed a never-before-seen energy pattern.

The butterfly-shaped pattern was first theorized by physicist Douglas Hofstadter in 1976, but it took the tools and technology now available at the MagLab to prove its existence.

"The observation of the 'Hofstadter butterfly' marks a real landmark in condensed matter physics and high magnetic field research," said Greg Boebinger, director of the MagLab. "It opens a new experimental direction in materials research."

This groundbreaking research demanded the ability to measure samples of materials at very low temperatures and very high magnetic fields, up to 35 tesla. Both of those conditions are available at the MagLab, making it an international destination for scientific exploration.

The unique periodic structure used to observe the butterfly pattern was composed of boron nitride (BN) and graphene. Graphene is a Nobel Prize-winning material that holds tremendous promise in revolutionizing computers, batteries, cell phones, televisions and even airplanes. A one-atom thick, honeycomb array of carbon atoms, graphene is virtually see-through, yet 300 times stronger than steel and 1,000 times more conducting than silicon.

"This is about a puzzle that has been solved," said Eric Palm, deputy director at the MagLab. "It is really about scientific curiosity. It is an exciting confirmation of a theory that was made years ago."

MagLab physicist Nicholas Bonesteel agreed, adding "The Hofstadter butterfly is a beautiful fractal energy pattern that has intrigued physicists for decades. Seeing clear experimental evidence for it is a real breakthrough."

One research team was led by Columbia University's Philip Kim and included researchers from City University of New York, the University of Central Florida, Tohoku University and the National Institute for Materials Science in Japan.

The team's work will be published today in the Advanced Online Publication of the journal Nature. Similar results were discovered at the MagLab by a group led by Pablo Jarillo-Herrero and Raymond Ashoori at MIT, as well as scientists from Tohoku University and the National Institute for Materials Science in Japan. Their work is expected to be published soon.

.


Related Links
Florida State University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Scientists capture first direct proof of Hofstadter butterfly effect
Orlando FL (SPX) May 20, 2013
A team of researchers from several universities - including UCF -has observed a rare quantum physics effect that produces a repeating butterfly-shaped energy spectrum in a magnetic field, confirming the longstanding prediction of the quantum fractal energy structure called Hofstadter's butterfly. This discovery by the team paves the way for engineering new types of extraordinary nanoscale ... read more


TIME AND SPACE
Moon being pushed away from Earth faster than ever

Bright Explosion on the Moon

NASA says meteor impact on the moon glowed like a star

Where on Earth did the moon's water come from

TIME AND SPACE
Mars Rover Opportunity Examines Clay Clues in Rock

Opportunity Rides Into History For Offworld Drive

NASA Mars Rover Curiosity Drills Second Rock Target

Mars Icebreaker Life Mission

TIME AND SPACE
Desert Tests Pave Way for Human Exploration of Small Bodies

Russia designs reusable spacecraft good for as many as five missions

British astronaut 'Major Tim' to fly to ISS

Danish Space Venture ready for lift off

TIME AND SPACE
China launches communications satellite

On Course for Shenzhou 10

Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

TIME AND SPACE
Next destination: space

Russia to Send 'Stress-Relief' Software to ISS

Mice, gerbils perish in Russia space flight

Star Canadian spaceman back on Earth, relishing fresh air

TIME AND SPACE
O3b Networks Launcher and payload integration are underway at Kourou

Arianespace underscores strong partnership with Japan during Tokyo meetings

O3b Networks' initial satellite is fueled for Arianespace's upcoming Soyuz launch from the Spaceport

Ariane Flight VA214's launch vehicle marks a preparation milestone

TIME AND SPACE
Critical Kepler Reaction Wheel Fails: Mission End In Sight

Sifting Through the Atmosphere's of Far-Off Worlds

New Method of Finding Planets Scores its First Discovery

Team Takes Part in Discovering New Planet

TIME AND SPACE
3-D modeling technology offers groundbreaking solution for engineers

NASA Seeks High-Performance Spaceflight Computing Capabilities

SPUTNIX is granted a license for space activity

Stanford Engineers' New Metamaterial Doubles Up on Invisibility




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement