Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




TECH SPACE
Neutron scattering provides data on adsorption of ions in microporous materials
by Staff Writers
Atlanta GA (SPX) Mar 07, 2013


This schematic shows the experimental setup for in-situ studies of ion adsorption on the surface of microporous carbon electrodes. Credit: Credit: Gleb Yushin.

The adsorption of ions in microporous materials governs the operation of technologies as diverse as water desalination, energy storage, sensing and mechanical actuation.

Until now, however, researchers attempting to improve the performance of these technologies haven't been able to directly and unambiguously identify how factors such as pore size, pore surface chemistry and electrolyte properties affect the concentration of ions in these materials as a function of the applied potential.

To provide the needed information, researchers at the Georgia Institute of Technology and the Oak Ridge National Laboratory have demonstrated that a technique known as small angle neutron scattering (SANS) can be used to study the effects of ions moving into nanoscale pores.

Believed to be the first application of the SANS technique for studying ion surface adsorption in-situ, details of the research were reported online Jan. 31, 2013, in the journal Angewandte Chemie International Edition.

Using conductive nanoporous carbon, the researchers conducted proof-of-concept experiments to measure changes in the adsorption of hydrogen ions in pores of different sizes within the same material due to variations in solvent properties and applied electrical potential.

Systematic studies performed with such a technique could ultimately help identify the optimal pore size, surface chemistry and electrolyte solvent properties necessary for either maximizing or minimizing the adsorption of ions under varying conditions.

"We need to understand this system better so we can predict the kind of surface chemistry required and the kinds of solvents needed to control the levels of ion penetration and adsorption in pores of different sizes," said Gleb Yushin, an associate professor in the Georgia Tech School of Materials Science and Engineering.

"Understanding these processes better could lead to the development of improved energy storage, water purification and desalination systems. This new experimental methodology may also give us paths to better understand ion transport in biological systems and contribute to the development of improved drugs and artificial organs."

The research was supported partially by the U.S. Army Research Office, the Georgia Institute of Technology and the Oak Ridge National Laboratory (ORNL).

"The advantage of neutron scattering is that it can be used to study real systems," said Yushin. "You can study most electrode materials and electrolyte combinations as long as they have a high sensitivity for neutron scattering."

Yushin and his collaborators - Georgia Tech graduate research assistant Sofiane Boukhalfa, and Oak Ridge scientists Yuri Melnichenko and Lilin He - conducted the research using ORNL's High Flux Isotope Reactor, which produces a beam of high-energy neutrons.

Their experimental setup allowed them to immerse activated carbon fabric samples - each sample containing pores of different sizes - in different electrolyte materials while varying the applied electrical potential.

By measuring how the neutron beam was scattered when it passed through the carbon fabric and electrolytes, the researchers could determine how the solvent, pore size and electrical potential affected the average ion concentration in the carbon material samples.

"You can learn whether the ions get adsorbed into small pores or large pores by simply comparing the changes in the neutron scattering," Yushin explained.

"This experimental technique allows us to independently change the surface chemistry to see how that affects the ion concentrations, and we can use different solvents to observe how the interaction between electrolyte and pore walls affects the ion adsorption in pores of different sizes. We can further identify exactly where the ion adsorption takes place even when no potential is applied to an electrode."

Earlier work in this area had not provided clear results.

"There have been multiple prior studies on the pore size effect, but different research groups worldwide have obtained contradictory results depending on the material selection and the model used to determine the specific surface area and pore size distribution in carbon electrodes," Yushin said.

"Neutron scattering should help us clarify existing controversies. We have already observed that depending on the solvent-pore wall interactions, either enhanced or reduced ion electro-adsorption may take place in sub-nanometer pores."

In their experiments, the researchers used two different electrolytes: water containing sulfuric acid and deuterium oxide - also known as heavy water - which also contained sulfuric acid. The two were chosen for the proof-of-concept experiments, though a wide range of other hydrogen-containing electrolytes could also be used.

Now that the technique has been shown to work, Yushin would like to expand the experimentation to develop better fundamental understanding about the complex interactions of solvent, ions and pore walls under applied potential. That could allow development of a model that could guide the design of future systems that depend on ion transport and adsorption.

"Once you gain the fundamental knowledge from SANS experiments, predictive theoretical models could be developed that would guide the synthesis of the optimal structures for these applications," he said. "Once you clearly understand the structure-property relationships, you can use materials science approaches to design and synthesize the optimal material with the desired properties."

Information developed through the research could lead to improvements in supercapacitors and hybrid battery-capacitor devices for rapidly growing applications in hybrid electrical vehicles, energy efficient industrial equipment, smart grid-distributed energy storage, hybrid-electric and electrical ships, high-power energy storage for wind power and uninterruptible power supplies.

Boukhalfa, S., et al., "Small-Angle Neutron Scattering for In Situ Probing of Ion Adsorption Inside Micropores." Angew. Chem. Int. Ed (2013).

.


Related Links
Georgia Institute of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Towards more sustainable construction
Montreal, Canada (SPX) Mar 05, 2013
Construction in Montreal is under a microscope. Now more than ever, municipal builders need to comply with long-term urban planning goals. The difficulties surrounding massive projects like the Turcot interchange lead Montrealers to wonder if construction in this city is headed in the right direction. New research from Concordia University gives us hope that this could soon be the case if suffic ... read more


TECH SPACE
China to use modified rocket for moon landing mission

Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

TECH SPACE
Mars rover 'sleeping' through solar storm

Curiosity Rover's Recovery on Track

NASA's Curiosity rover to be back online next week

Short Bump Gets Robotic Arm Closer to Rock Target

TECH SPACE
Shadows over data sharing

NASA Launches Website to Design Interplanetary Missions

Sequestration and the Civil Space Industry

Gadgets and gizmos galore at world's top IT fair

TECH SPACE
China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

Woman expected again to join next China crew roster

China's space station will be energy-efficient

TECH SPACE
'Goody Bag' Filled With Sample Processing Supplies Arrives on Station

ESA's Columbus Biolab Facility

SpaceX set for third mission to space station

Record Number of Students Control ISS Camera

TECH SPACE
Vega launcher integration continues for its April mission

SpaceX's capsule arrives at ISS

Dragon Transporting Two ISS Experiments For AMES

SpaceX Optimistic Despite Dragon Capsule Mishap

TECH SPACE
The Birth of a Giant Planet?

Scientists spot birth of giant planet

NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

TECH SPACE
Atoms with Quantum-Memory

Big data: Searching in large amounts of data quickly and efficiently

Neutron scattering provides data on adsorption of ions in microporous materials

MEXSAT Bicentenario Satellite Completes On-orbit Testing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement