Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Nature Materials Study: Boosting Heat Transfer With Nanoglue
by Staff Writers
Troy NY (SPX) Dec 07, 2012


File image.

A team of interdisciplinary researchers at Rensselaer Polytechnic Institute has developed a new method for significantly increasing the heat transfer rate across two different materials. Results of the team's study, published in the journal Nature Materials, could enable new advances in cooling computer chips and lighting-emitting diode (LED) devices, collecting solar power, harvesting waste heat, and other applications.

By sandwiching a layer of ultrathin "nanoglue" between copper and silica, the research team demonstrated a four-fold increase in thermal conductance at the interface between the two materials. Less than a nanometer-or one billionth of a meter-thick, the nanoglue is a layer of molecules that form strong links with the copper (a metal) and the silica (a ceramic), which otherwise would not stick together well.

This kind of nanomolecular locking improves adhesion, and also helps to sync up the vibrations of atoms that make up the two materials which, in turn, facilitates more efficient transport of heat particles called phonons. Beyond copper and silica, the research team has demonstrated their approach works with other metal-ceramic interfaces.

Heat transfer is a critical aspect of many different technologies. As computer chips grow smaller and more complex, manufacturers are constantly in search of new and better means for removing excess heat from semiconductor devices to boost reliability and performance.

With photovoltaic devices, for example, better heat transfer leads to more efficient conversion of sunlight to electrical power. LED makers are also looking for ways to increase efficiency by reducing the percentage of input power lost as heat.

Ganapati Ramanath, professor in the Department of Materials Science and Engineering at Rensselaer, who led the new study, said the ability to enhance and optimize interfacial thermal conductance should lead to new innovations in these and other applications.

"Interfaces between different materials are often heat-flow bottlenecks due to stifled phonon transport. Inserting a third material usually only makes things worse because of an additional interface created," Ramanath said.

"However, our method of introducing an ultrathin nanolayer of organic molecules that strongly bond with both the materials at the interface gives rise to multi-fold increases in interfacial thermal conductance, contrary to poor heat conduction seen at inorganic-organic interfaces.

This method to tune thermal conductance by controlling adhesion using an organic nanolayer works for multiple materials systems, and offers a new means for atomic- and molecular-level manipulation of multiple properties at different types of materials interfaces. Also, it's cool to be able to do this rather unobtrusively by the simple method of self-assembly of a single layer of molecules."

Results of the new study, titled "Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers," were published online last week by Nature Materials, and will appear in an upcoming print edition of the journal. The study may be viewed online at: http://go.nature.com/3LLeYP

The research team used a combination of experiments and theory to validate their findings.

"Our study establishes the correlation between interfacial bond strength and thermal conductance, which serves to underpin new theoretical descriptions and open up new ways to control interfacial heat transfer," said co-author Pawel Keblinski, professor in the Department of Materials Science and Engineering at Rensselaer.

"It is truly remarkable that a single molecular layer can bring about such a large improvement in the thermal properties of interfaces by forming strong interfacial bonds. This would be useful for controlling heat transport for many applications in electronics, lighting, and energy generation," said co-author Masashi Yamaguchi, associate professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer.

This study was funded with support from the National Science Foundation (NSF).

"The overarching goal of Professor Ramanath's NSF-sponsored research is to elucidate, using first-principles-based models, the effects of molecular chemistry, chemical environment, interface topography, and thermo-mechanical cycling on the thermal conductance of metal-ceramic interfaces modified with molecular nanolayers," said Clark V. Cooper, senior advisor for science at the NSF Directorate for Mathematical and Physical Sciences, who formerly held the post of program director for Materials and Surface Engineering.

"Consistent with NSF's mission, the focus of his research is to advance fundamental science, but the potential societal benefits of the research are enormous."

"This is a fascinating example of the interplay between the physical, chemical, and mechanical properties working in unison at the nanoscale to determine the heat transport characteristics at dissimilar metal-ceramic interfaces," said Anupama B. Kaul, a program director for the Division of Electrical, Communications, and Cyber Systems at the NSF Directorate for Engineering.

"The fact that the organic nanomolecular layer is just a monolayer in thickness and yet has such an important influence on the thermal characteristics is truly remarkable. Dr. Ramanath's results should be particularly valuable in nanoelectronics where heat management due to shrinking device dimensions continues to be an area of active research."

Along with Ramanath, Keblinski, and Yamaguchi, co-authors of the paper are Rensselaer materials science graduate students Peter O'Brien, Sergei Shenogin, and Philippe K. Chow; Rensselaer physics graduate student Jianxiun Liu; and Danielle Laurencin and P. Hubert Mutin of the Institut Charles Gerhardt Montpellier and Universite Montpellier in France.

.


Related Links
Rensselaer Polytechnic Institute
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
New optical tweezers trap specimens just a few nanometers across
Stanford CA (SPX) Dec 07, 2012
To grasp and move microscopic objects, such as bacteria and the components of living cells, scientists can harness the power of concentrated light to manipulate them without ever physically touching them. Now, doctoral student Amr Saleh and Assistant Professor Jennifer Dionne, researchers at the Stanford School of Engineering, have designed an innovative light aperture that allows them to optica ... read more


NANO TECH
NASA's GRAIL Creates Most Accurate Moon Gravity Map

Chinese astronauts may grow veg on Moon

WSU researchers use 3-D printer to make parts from moon rock

China's Chang'e-3 to land on moon next year

NANO TECH
NASA to send new rover to Mars in 2020

Safe Driving on Mars

Ancient Mars May Have Captured Enormous Floodwaters

NASA Announces Multi-Year Mars Program With New Rover In 2020

NANO TECH
Kickstarter's creative community takes hold in Britain

Civil Space 2013 Symposium

SciTechTalk: Media fixes for space junkies

NASA Voyager 1 Encounters New Region in Deep Space

NANO TECH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

NANO TECH
New Crew of ISS to Perform Two Spacewalks

Space Station to reposition for science

Spacewalks on agenda for new space crew

NASA, Roscosmos Assign Veteran Crew to Yearlong Space Station Mission

NANO TECH
SPACEX Awarded Two EELV Class Missions From The USAF

Russia Set to Launch Telecoms Satellite for Gazprom

Sea Launch Delivers the EUTELSAT 70B Spacecraft into Orbit

S. Korea readies new bid to join global space club

NANO TECH
Astronomers discover and 'weigh' infant solar system

Search for Life Suggests Solar Systems More Habitable than Ours

Do missing Jupiters mean massive comet belts?

Brown Dwarfs May Grow Rocky Planets

NANO TECH
Smartphones might soon develop emotional intelligence

Tablet technology takes teaching into 21st century

SES And ESA To Collaborate On Electra To Develop First All-Electric Small/Medium Sized Satellite Platform In Europe

Apple's CEO to bring production back to US




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement