Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE SCOPES
Nanomirrors Could Enhance Telescopes And Semiconductor Chips
by David Chandler
Cambridge MA (SPX) Jun 27, 2008


Gratings used to manipulate X-rays for future space telescopes and other applications, like tiny miniaturized venetian blinds, were created using this interference lithography patterning tool, called the nanoruler, developed at MIT's Space Nanotechnology Laboratory. The colorful, diffracting wafer at center has a diameter of 12 inches. Photo credit: Ralf Heilmann

A new way of bending X-ray beams developed by MIT researchers could lead to greatly improved space telescopes, as well new tools for biology and for the manufacture of semiconductor chips.

X-rays from space provide astronomers with important information about the most exotic events and objects in our universe, such as dark energy, black holes and neutron stars.

But X-rays are notoriously difficult to collect and many interesting cosmic sources are faint, which makes collecting these high-energy rays difficult and time-consuming, even with telescopes on satellites far above our X-ray-absorbing atmosphere.

Now a group of researchers from MIT has fabricated a new, highly efficient nanoscale Venetian-blind-like device that contains thousands of ultrasmooth mirror slats per millimeter for use in future improved space-based X-ray telescopes.

The so-called Critical- Angle Transmission (CAT) gratings feature dense arrays of tens-of- nanometer-thin, freely suspended silicon structures that serve as efficient mirrors for the reflection and diffraction of nanometer- wavelength light-otherwise known as X-rays.

New instrument designs based on these gratings could also lead to advances in fields beyond astrophysics, from plasma physics to the life and environmental sciences, as well as in extreme ultraviolet lithography, a technology of interest to the semiconductor industry.

The concept behind CAT gratings might also open new avenues for devices in neutron optics and for the diffraction of electrons, atoms and molecules.

Based on an invention by Ralf Heilmann and Mark Schattenburg of the Space Nanotechnology Laboratory (SNL) at the MIT Kavli Institute of Astrophysics and Space Research, the daunting fabrication challenges were overcome by graduate student Minseung Ahn of the Department of Mechanical Engineering at MIT in a yearlong effort, with the help of financial support from NASA and a Samsung Fellowship.

Motivated by technology goals for NASA's next-generation X-ray telescope, called Constellation-X, the new devices promise to improve more than five-fold upon the efficiency of the transmission gratings on board NASA's Chandra X-Ray Observatory (launched in 1999), which were also built at the Space Nanotechnology Lab.

The reason for this improvement lies in the fact that in the new design, X-rays are reflected very efficiently at very shallow angles-akin to skipping stones on water-from the sub-nanometer-smooth sidewalls of the silicon slats, through the spaces between the slats.

Also, in the earlier version the X-rays had to pass through a supporting substrate of polyimide, which absorbed many of the rays and reduced the grating's efficiency.

The silicon slats-as thin as 35 nanometers, which is comparable to the smallest feature sizes still under development in commercial computer chip manufacturing-are parallel to each other and separated by as little as about 150 nanometers. The slats have to extend many micrometers in the remaining two dimensions.

"Imagine a thin, 40-foot- long, 8-foot-tall mirror, with surface roughness below a tenth of a millimeter," says Heilmann. "Then put tens of thousands of these mirrors next to each other, each spaced precisely an inch from the next. Now shrink the whole assembly-including the roughness-down by a factor of a million, and you have a good CAT grating."

Recent X-ray test results from a prototype device, obtained with the help of Eric Gullikson of Lawrence Berkeley National Laboratory, confirmed that it met theoretical expectations. The results of this work were published in Optics Express (Vol. 16, No. 12) on June 9.

They were also presented at the 52nd Intl. Conference on Electron, Ion and Photon Beam Technology and Nanofabrication in Portland, Ore., on May 28, and will be presented again at the SPIE Conference on Astronomical Telescopes and Instrumentation in Marseille, France, on June 23.

.


Related Links
the missing link Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE SCOPES
XMM-Newton Watches Lazy Pulsar Being Jazzed Up By Companion
Paris, France (ESA) Jun 24, 2008
XMM-Newton has, for the first time, detected signals from both stars of a binary pulsar system in X-rays, unveiling a scientific goldmine. Each star of the closely-packed system is a dense neutron star, spinning extremely fast, radiating X-rays in pulses. The binary pulsar PSR J0737-3039 was first spotted by astronomers in 2003 in radio wavelengths. X-rays can be used to probe deeper and ... read more


SPACE SCOPES
Looking For Early Earth...On The Moon

Moon-Bound NASA Spacecraft Passes Major Preflight Tests

Northrop Grumman Completes LCROSS Thermal Vacuum Testing

NASA Study Provides Next Step To Establishing Lunar Outpost

SPACE SCOPES
NASA's Phoenix Mars Lander Puts Soil In Chemistry Lab

Phoenix Returns Treasure Trove For Science

Martian Soil Good Enough For Asparagus

Game of two halves: Scientists solve Martian riddle

SPACE SCOPES
Fly Your Thesis - An Astronaut Experience

New Developments On The Road To Cosmos 2

Options For Space Tourists

Russian businessmen book spaceship rides: report

SPACE SCOPES
A Better Focus On Shenzhou

Gallup Poll Shows Americans Unconcerned About China Space Program

Chinese company develops 'UFO': report

China manned space flight set for October: state media

SPACE SCOPES
Discovery undocks from ISS

Shuttle astronauts bid farewell to space station crew

Shuttle Astronauts Bid Farewell To Space Station Crew

Astronauts test Japanese robotic arm

SPACE SCOPES
Successful Ariane 5 Solid Rocket Booster Test Firing

CU-Boulder Students Set To Launch Student Rocket Payloads June 27

ProtoStar I And BADR-6 Are Ready For Next Ariane 5 Launch

Kourou Spaceport Receives Fifth Ariane 5 For 2008

SPACE SCOPES
Chemical Clues Point To Dusty Origin For Earth-Like Planets

Astronomers discover clutch of 'super-Earths'

Vanderbilt Astronomers Getting Into Planet-Finding Game

NASA Selects MIT-Led Team To Develop Planet-Searching Satellite

SPACE SCOPES
BAE Computers To Manage Data Processing For Satellite Missions

Space Radar To Improve Mining Safety

'Spore' computer game aliens coming to virtual life

Integral Systems Integrated Solution To Support JCSAT-12




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement