Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Nano-pea pod model widens electronics applications
by Staff Writers
Saransk, Russia (SPX) Sep 12, 2014


The dependence of the continuous spectrum on the connecting wires' length. Image courtesy Eremin et al.

Periodic chain-like nanostructures are widely used in nanoelectronics. Typically, chain elements include the likes of quantum rings, quantum dots, or quantum graphs.

Such a structure enables electrons to move along the chain, in theory, indefinitely. The trouble is that some applications require localised electrons-these are no longer in a continuous energy spectrum but in a discrete energy spectrum, instead.

Now, a new study by Russian scientists identifies ways of disturbing the periodicity of a model nanostructure to obtain the desired discrete spectrum with localised electrons. These findings by Dr Dmitry A. Eremin from the Mordovian State University in Saransk, Russia, and colleagues have been published in EPJ B.

Theoretical calculations on nano-systems play an important role in the prediction of electrical transport properties.

The authors created theoretical models of nanometric scale entities dubbed nano-pea pods. The latter are made of a nanotube filled by a chain of fullerene molecules. Such models are based on a bent chain of spheres connected by wires.

The scientists then described the energy spectrum of systems with disturbed periodicity and set out to find the condition for the appearance of localised electrons.

Using a method based on the so called general operator extensions theory, they varied the length of the connecting wires, the intensity of the disturbance and the value of the bending angle.

Eremin and colleagues found that localised electrons' appearance has a stronger dependency on the variation of the length of the wires of the bent chain than the variation of the value of the bending angle.

This finding is consistent with the fact that a local perturbation does not affect the continuous spectrum. As the bending angle tends towards zero, the electrons tend to become less localised.

Eremin, D. A. et al. (2014). Electron energy spectrum for bent chain of nanospheres. European Physical Journal B. DOI 10.1140/epjb/e2014-50002-0

.


Related Links
Mordovian State University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Peptoid Nanosheets at the Oil/Water Interface
Berkeley CA (SPX) Sep 12, 2014
From the people who brought us peptoid nanosheets that form at the interface between air and water, now come peptoid nanosheets that form at the interface between oil and water. Scientists at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed peptoid nanosheets - two-dimensional biomimetic materials with customizable properties - that self-a ... read more


NANO TECH
Year's final supermoon is a Harvest Moon

China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

NANO TECH
Flash-Memory Reformat Successful

NASA's Mars Curiosity rover reaches 'far frontier'

NASA's Mars Curiosity Rover Arrives at Martian Mountain

Flash-Memory Reformat On Opportunity Underway

NANO TECH
The long descent

NASA's Orion Spacecraft Nears Completion, Ready for Fueling

Top trends at IFA 2014, Europe's biggest gadget fair

Tech giants bet on 'smart home' revolution

NANO TECH
China eyes working with other nations as station plans develop

China completes construction of advanced space launch facility

China to launch second space lab in 2016: official

China's Space Station is Still On Track

NANO TECH
4th SpaceX Cargo Mission to ISS Dragon Scheduled for Sep 20

Three Russian and American astronauts return to Earth

Science Continues on Orbital Lab While Trio Prepares for Departure

International Space Station accidentally launches satellites on its own

NANO TECH
NASA's Wind-Watching ISS-RapidScat Ready for Launch

Proton Launches May Compete on Price With US Falcons

SpaceX's next cargo launch set for Sept 20

MEASAT-3b and Optus 10 given go-ahead for Ariane 5 Sept 11 launch

NANO TECH
Solar System Simulation Reveals Planetary Mystery

'Hot Jupiters' provoke their own host suns to wobble

First evidence for water ice clouds found outside solar system

NRL Scientist Explores Birth of a Planet

NANO TECH
Not just cool - it's a gas

Where to grab space debris

Grooving Crystal Surfaces Repel Water

U.S. military taps Northrop Grumman for new technology




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.