Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
NPL and SUERC calibrate a 'rock clock'
by Staff Writers
Washington DC (SPX) Jan 09, 2012


The 'argon-argon clock' works by measuring the ratio of the amount of radioactive potassium in a sample of rock to the amount of its decay product, argon.

New research by the National Physical Laboratory (NPL) and the Scottish Universities Environmental Research Centre (SUERC) will improve the accuracy of estimates of the time of geological events. The work centres on the calibration of one of the world's slowest clocks, known as the 'argon-argon clock'.

The 'argon-argon clock' works by measuring the ratio of the amount of radioactive potassium in a sample of rock to the amount of its decay product, argon. As scientists already know the half-life of this radioactive decay (1.25 billion years), it can be used to date rocks back to the time of the formation of the Earth, 4.5 billion years ago. The older a rock is, the more potassium has decayed and the more argon is found in the rock.

The effect of the new research varies from one rock type to another, but could mean up to a 1.2 per cent difference in a rock's age from the original calculation.

"One per cent change in the accuracy of an age doesn't sound like a lot, but when aiming for 0.1 per cent precision through geological time it is a very significant breakthrough," said Darren Mark at the SUERC, who worked with NPL on the research.

"For example, this will help with establishing eruptive histories and predicting the future behaviour of young volcanoes, such as the inhabited British overseas territory Tristan da Cunha in the South Atlantic Ocean."

The discovery came about as part of an unrelated NPL research project to measure the Boltzmann Constant. The Boltzmann Constant links the magnitude of a degree Celsius to the amount of energy held by the molecules of a substance.

To measure the Boltzmann researchers needed to build the world's most accurate thermometer which works by measuring the speed of molecules in argon gas. But to understand their results they had to measure the isotopic composition of their samples of argon gas. After searching the world for collaborators, NPL enlisted the help of Darren Mark and Fin Stuart of the Natural Environment Research Council's Argon Isotope Facility (AIF). Darren and Fin are the 'parents' of ARGUS - the most accurate mass spectrometer for argon isotope measurements in the world.

During the course of their research, they came across an unexpected result. The measurements they made using ARGUS were so precise that they allowed the team to draw conclusions about the isotope distribution of atmospheric argon. This is used to calibrate noble-gas mass spectrometers and so is responsible for the calibration of all 'argon-argon' dating that takes place throughout the world.

The results show that Alfred Nier, a great American physicist of the 1950s, was slightly in error with his measurements of argon. The data revealed that the correct measurement was achieved in 2006 by researchers in South Korea and North America.

"This work shows the power of precision measurement," said Michael de Podesta, who led the research efforts at NPL.

"Many people think precision measurement is just about adding another decimal place to a number. But it's far more exciting than that. It's more like getting a sharper lens on a camera. It allows us to see the world more clearly and, when we look closely, we are never quite sure what we will find."

.


Related Links
National Physical Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Pentagon-backed 'time cloak' stops the clock
Paris (AFP) Jan 4, 2012
Pentagon-supported physicists on Wednesday said they had devised a "time cloak" that briefly makes an event undetectable. The laboratory device manipulates the flow of light in such a way that for the merest fraction of a second an event cannot be seen, according to a paper published in the science journal Nature. It adds to experimental work in creating next-generation camouflage - a s ... read more


TIME AND SPACE
'Mini moons' may surround Earth

Rare Moon mineral found in Australia

Ecliptic Shoots for Moon at End of a Record Year

NASA's Twin Grail Spacecraft Reunite in Lunar Orbit

TIME AND SPACE
Mars rover to spend winter at 'Greeley Haven,' named for late ASU geologist Ronald Greeley

Failed Russian space probe to fall

Trajectory Maneuver For Mars Lab Slated for January 11

Opportunity Well Positioned For Another Winter On Mars

TIME AND SPACE
2011 in Polish astronautics

Hawking: Mankind must colonize space

Smoke Particles Are Not All the 'SAME'

Magnetically-levitated flies offer clues to future of life in space

TIME AND SPACE
Spying on Tiangong

China's space ambitions ally glory with pragmatism

Why The X-37B Is Not Spying On Tiangong

Getting ready for challenges of space

TIME AND SPACE
New crew arrives at international space station

NASA 'Smart SPHERES' Tested on ISS

Russia sends multinational crew to ISS

As Soyuz Rolls ISS Crew Work On Science

TIME AND SPACE
China to launch Bolivian satellite in 2013: Chinese Ambassador

Ariane 5, Soyuz, Vega: Three world-changing launch vehicles

Satellites: Europe's Arianespace sets 13 launches for 2012

Arianespace Set To Ride The Power of Three In 2012

TIME AND SPACE
Wanted: Habitable Moons

Subaru's Sharp Eye Confirms Signs of Unseen Planets in the Dust Ring of HR 4796 A

New Exo planets raise questions about the evolution of stars

Astronomers discover deep-fried planets

TIME AND SPACE
Graphene offers protection from intense laser pulses

Successful Compatibility Testing of UHF Hosted Payload on Intelsat-22

New materials remove CO2 from smokestacks, tailpipes and even the air

Ultra-thin laptops set to dazzle CES gadget fair




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement