Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
NASA's NuSTAR Sees Rare Blurring of Black Hole Light
by Staff Writers
Washington DC (SPX) Aug 13, 2014


The regions around supermassive black holes shine brightly in X-rays. Some of this radiation comes from a surrounding disk, and most comes from the corona, pictured here in this artist's concept as the white light at the base of a jet. This is one of a few possible shapes predicted for coronas. Image courtesy NASA/JPL-Caltech. For a larger version of this image please go here.

NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) has captured an extreme and rare event in the regions immediately surrounding a supermassive black hole. A compact source of X-rays that sits near the black hole, called the corona, has moved closer to the black hole over a period of just days.

"The corona recently collapsed in toward the black hole, with the result that the black hole's intense gravity pulled all the light down onto its surrounding disk, where material is spiraling inward," said Michael Parker of the Institute of Astronomy in Cambridge, United Kingdom, lead author of a new paper on the findings appearing in the Monthly Notices of the Royal Astronomical Society.

As the corona shifted closer to the black hole, the gravity of the black hole exerted a stronger tug on the X-rays emitted by it. The result was an extreme blurring and stretching of the X-ray light. Such events had been observed previously, but never to this degree and in such detail.

Supermassive black holes are thought to reside in the centers of all galaxies. Some are more massive and rotate faster than others. The black hole in this new study, referred to as Markarian 335, or Mrk 335, is about 324 million light-years from Earth in the direction of the Pegasus constellation.

It is one of the most extreme of the systems for which the mass and spin rate have ever been measured. The black hole squeezes about 10 million times the mass of our sun into a region only 30 times the diameter of the sun, and it spins so rapidly that space and time are dragged around with it.

Even though some light falls into a supermassive black hole never to be seen again, other high-energy light emanates from both the corona and the surrounding accretion disk of superheated material. Though astronomers are uncertain of the shape and temperature of coronas, they know that they contain particles that move close to the speed of light.

NASA's Swift satellite has monitored Mrk 335 for years, and recently noted a dramatic change in its X-ray brightness.

In what is called a target-of-opportunity observation, NuSTAR was redirected to take a look at high-energy X-rays from this source in the range of 3 to 79 kiloelectron volts. This particular energy range offers astronomers a detailed look at what is happening near the event horizon, the region around a black hole from which light can no longer escape gravity's grasp.

Follow-up observations indicate that the corona still is in this close configuration, months after it moved. Researchers don't know whether and when the corona will shift back.

What is more, the NuSTAR observations reveal that the grip of the black hole's gravity pulled the corona's light onto the inner portion of its superheated disk, better illuminating it. Almost as if somebody had shone a flashlight for the astronomers, the shifting corona lit up the precise region they wanted to study.

The new data could ultimately help determine more about the mysterious nature of black hole coronas. In addition, the observations have provided better measurements of Mrk 335's furious relativistic spin rate. Relativistic speeds are those approaching the speed of light, as described by Albert Einstein's theory of relativity.

"We still don't understand exactly how the corona is produced or why it changes its shape, but we see it lighting up material around the black hole, enabling us to study the regions so close in that effects described by Einstein's theory of general relativity become prominent," said NuSTAR Principal Investigator Fiona Harrison of the California Institute of Technology (Caltech) in Pasadena.

"NuSTAR's unprecedented capability for observing this and similar events allows us to study the most extreme light-bending effects of general relativity."

.


Related Links
NuSTAR
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Astrophysicists Detect Destruction of Three Stars by Black Holes
Moscow, Russia (SPX) Aug 13, 2014
Researchers from MIPT and the Space Research Institute of the Russian Academy of Sciences have reported registering three possible occasions of thetidal destruction of stars by supermassive black holes at the centers of galaxies. Details are given in an article by Ildar Khabibullin and Sergei Sazonov, accepted for publication by the Monthly Notices of the Royal Astronomical Society journal(a pre ... read more


TIME AND SPACE
China to test recoverable moon orbiter

China to send orbiter to moon and back

August supermoon will be brightest this year

Manned Moon Mission to Cost Russia $2.8 Bln

TIME AND SPACE
Opportunity Heads to 'Marathon Valley'

NASA Mars Curiosity Rover: Two Years and Counting on Red Planet

Robotic Rock Climbers Could Uncover Clues to Mars' Past

Russia To Construct Landing Pad For ExoMars Mission

TIME AND SPACE
Study Compiles Data on Problem of Sleep Deprivation in Astronauts

Aerojet Completes CST-100 Work for Commercial Crew Work

Introducing this year's underground astronauts

American Spaceports

TIME AND SPACE
More Tasks for China's Moon Mission

China's Circumlunar Spacecraft Unmasked

China to launch HD observation satellite this year

Lunar rock collisions behind Yutu damage

TIME AND SPACE
ATV completes final automated docking

NASA's Space Station Fix-It Demo for Satellites Gets Hardware for 2.0 Update

ESA's cargo vessel ready for space delivery

Robonaut Upgrades, Spacewalk Preps and Cargo Ops for ISS Crew

TIME AND SPACE
Ariane 5 is readied for Arianespace's September launch with MEASAT-3b and Optus 10

ATK Passes Critical Design Review for NASA's Space Launch System Booster

Russia to Decide on Future of Sea Launch Project by End of 2014

SpaceX launches AsiaSat8 into orbit via Falcon 9 rocket

TIME AND SPACE
Rotation of Planets Influences Habitability

Planet-like object may have spent its youth as hot as a star

Young binary star system may form planets with weird and wild orbits

Hubble Finds Three Surprisingly Dry Exoplanets

TIME AND SPACE
Learning from origami to design new materials

BAE Systems touts its Artisan radar system

Association of satellite operators joins program for space safety

USN Moderates CubeSat RF Communications Standards Meeting




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.