Subscribe free to our newsletters via your
. 24/7 Space News .




EARTH OBSERVATION
NASA data shows surfer-shaped waves in near-Earth space
by Staff Writers
Greenbelt MD (SPX) Jul 09, 2015


This simulation shows the magnetic bubble around Earth, called the magnetosphere. As the the solar wind - a steady flow of particles from the sun - rushes by, it creates the shape of classic surfer waves known to scientists as Kelvin-Helmholtz waves. Image courtesy S. Kavosi/J. Raeder/UNH. For a larger version of this image please go here.

The universe overflows with repeating patterns. From the smallest cells to the largest galaxies, scientists are often rewarded by observing similar patterns in vastly different places. One such pattern is the iconic surfer's waves seen on the ocean - a series of curled hills moving steadily in one direction.

The shape has a simple cause. A fast fluid, say wind, moving past a slower one, say water, naturally creates this classic shape. Named Kelvin-Helmholtz waves in the late 1800s after their discoverers, these waves have since been discovered all over the universe: in clouds, in the atmospheres of other planets, and on the sun. Now two recently published papers highlight these shapely waves at the boundaries of near-Earth space.

Scientists want to understand the details of what happens at those boundaries because various events there can disturb our space environment. When strong enough, this space weather can interrupt our communications systems or electronics on board satellites.

While scientists have occasionally spotted Kelvin-Helmholtz waves at this boundary before - giving scientists reason to wonder if they could enhance or enable such space weather - the new papers show the waves are much more common than expected. The second paper presents a case study describing a previously unobserved way in which the waves can be initiated. Together, the two sets of research suggest the waves may have more of an effect on our space environment than previously realized.

"We have known before that Kelvin-Helmholtz waves exist at the boundaries of Earth's magnetic environment - but they were considered relatively rare and thought to only appear under specialized conditions," said Shiva Kavosi, a space scientist at the University of New Hampshire in Durham, and first author on one of the papers, which appeared in Nature Communications on May 11, 2015. "It turns out they can appear under any conditions and are much more prevalent than we thought. They're present 20% of the time."

The waves are a direct result of the way our planet fits into the larger solar system. Planet Earth is a gigantic magnet and its magnetic influence extends outward in a large bubble called a magnetosphere.

A constant flow of particles from the sun, called the solar wind, blows by the magnetosphere - not unlike a wind blowing over the surface of the ocean. During certain situations, particles and energy from the sun can breach the magnetosphere, crossing into near-Earth space. It is this influx that lies at the heart of the space weather events that can affect our technology closer to home.

To spot the frequency of the Kelvin-Helmholtz waves, the team relied on instrument data from two NASA spacecraft: the Advanced Composition Explorer, or ACE, and the Time History of Events and Macroscale Interactions during Substorms, or THEMIS. ACE sits between Earth and the sun, measuring the solar wind about 30-60 minutes before it makes contact with Earth's magnetosphere. THEMIS orbits Earth, regularly moving in and out of the magnetosphere boundaries. The researchers first established what the Kelvin-Helmholtz waves looked like with numerical simulations.

They then used THEMIS observations to see when and where they occur. Next, they correlated what they saw at the magnetopause boundaries with what ACE measured in the solar wind. Previous theories suggested that the Kelvin-Helmholtz waves would only occur under very specific situations, such as when the solar wind's magnetic fields pointed in the same direction as Earth's.

Unexpectedly, the team found that the Kelvin-Helmholtz waves appeared under a wide variety of conditions. Fast and slow winds and winds with magnetic fields pointed in any direction were all equally capable of producing these classic waves.

While the first paper compared Kelvin-Helmholtz waves to what was seen in the solar wind, the second team compared it to what was happening closer to Earth and provides a possible explanation as to why they may be observed so frequently. The second paper was released online in the Journal of Geophysical Research on June 26, 2015, and was conducted by Brian Walsh at Boston University and Evan Thomas, a student at Virginia Tech in Blacksburg, Virginia, who is collocated at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Thomas works with data from a network of ground observatories known as SuperDARN, short for Super Dual Auroral Radar Network. These measure electric fields in near-Earth space. Walsh focuses on THEMIS data.

Using the combined space- and ground-based observations, the team detected Kelvin-Helmholtz waves propagating down the side of the magnetosphere's boundary. THEMIS also spotted something else: Just before the waves began, a reservoir of charged gas around Earth - known as the plasmasphere - sent out a thin plume of plasma that traveled over 20,000 miles to contact the edges of the magnetosphere, depositing additional atoms into that crucial sun-Earth boundary.

Such plumes are fairly regular occurrences, but this is the first time they've been correlated with Kelvin-Helmholtz waves. This case study suggests that the plume itself may trigger the waves, perhaps because it increases the density at the magnetosphere boundary, thus creating a fluid that is substantially more sluggish than the faster solar wind blowing past - the necessary conditions for a Kelvin-Helmholtz wave.

"The theory of Kelvin-Helmholtz waves is well-developed, but we don't have many observations," said Thomas. "These new observations show that the waves are happening more often than expected and are probably more important than we thought - but we still don't know all the details."

Understanding that crucial magnetospheric boundary and how it can let in solar material requires an understanding of the variety of processes that can affect and disrupt it.

"There are a lot of processes proposed for how material enters into the magnetosphere," said Raeder. "And Kelvin-Helmholtz waves are one of them. Previously we thought the waves weren't happening often enough to have a strong effect, but if Kelvin-Helmholtz waves perturb the boundary and mix the solar material with near-Earth space, then that would be a way for the plasma from the solar wind to get into the magnetosphere."

Whether or not Kelvin-Helmholtz waves are a strong trigger for space weather events near Earth, these crucial details help paint a more complete picture of our magnetosphere, ultimately helping us to protect our home planet.

Reader Paper


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Goddard Space Flight Center
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
Estimating Earth's last pole reversal using radiometric dating
Tokyo, Japan (SPX) Jul 08, 2015
The Earth's magnetic field periodically reverses such that the north magnetic pole becomes the south magnetic pole. The latest reversal is called by geologists the Matuyama-Brunhes boundary (MBB), and occurred approximately 780,000 years ago. The MBB is extremely important for calibrating the ages of rocks and the timing of events that occurred in the geological past; however, the exact ag ... read more


EARTH OBSERVATION
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

EARTH OBSERVATION
Curiosity rover finds evidence of Mars' primitive continental crust

Never Get Lost on Mars Again With NASA's New Red Planet Map

Opportunity Rover's 7th Mars Winter to Include New Study Area

Opportunity Gets Back to Work

EARTH OBSERVATION
NASA selects leading-edge concepts for continued study

US selects four astronauts for commercial flight

Docking Adapter Sets Stage for Commercial Crew Crew

Targeted LEDs could provide efficient lighting for plants grown in space

EARTH OBSERVATION
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

EARTH OBSERVATION
Student satellite wins green light for Station deployment

'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

EARTH OBSERVATION
Baikonur Cosmodrome to Be Equipped With Viewing Platforms

30 launches planned in next three fiscals: ISRO chief

India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

EARTH OBSERVATION
Bricks to build an Earth found in every planetary system

Observing the birth of a planet

Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

EARTH OBSERVATION
A cool way to form 2-D conducting polymers using ice

Engineers give invisibility cloaks a slimmer design

Rubber expansion threatens biodiversity and livelihoods

Disney gives sneak peek for planned China theme park




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.