Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
NASA Scientist Figures Way to Weigh Space Rock
by Staff Writers
Pasadena CA (JPL) May 29, 2012


This computer generated image of asteroid 1999 RQ36 was derived from data acquired by the NASA-supported Arecibo Observatory in Puerto Rico. Image credit: NASA/NSF/Cornell/Nolan. For a larger version of this image please go here.

A scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif., has accurately determined the mass of a nearby asteroid from millions of miles away. The celestial equivalent of "guess your weight" was achieved by Steve Chesley of JPL's Near-Earth Object Program Office by utilizing data from three NASA assets - the Goldstone Solar System Radar in the California desert, the orbiting Spitzer Space telescope, and the NASA-sponsored Arecibo Observatory in Puerto Rico.

Chesley presented his findings this past Saturday, May 19, at the Asteroids, Comets and Meteors 2012 meeting in Niigata, Japan.

For Chesley to define the asteroid's mass, he first needed to understand its orbit and everything that could affect that orbit - including neighboring celestial bodies and any propulsive force (however minute) the asteroid could generate.

Incorporating extraordinarily precise observations collected by astronomer Michael Nolan at Arecibo Observatory in September 2011, Arecibo and Goldstone radar observations made in 1999 and 2005, and the gravitational effects of the sun, moon, planets and other asteroids, Chesley was able to calculate how far the asteroid deviated from its anticipated orbit.

He found that 1999 RQ36 had deviated from the mathematical model by about 100 miles (160 kilometers)in the past 12 years. The only logical explanation for this orbital change was that the space rock itself was generating a minute propulsive force known in space rock circles as the Yarkovsky effect.

The Yarkovsky effect is named for the 19th-century Russian engineer who first proposed the idea that a small, rocky space object would, over long periods of time, be noticeably nudged in its orbit by the slight push created when it absorbs sunlight and then re-emits that energy as heat. The effect is hard to measure because it's so infinitesimally small.

"At its peak, when the asteroid is nearest the sun, the Yarkovsky force on 1999 RQ36 is only about a half ounce - around the weight of three grapes," said Chesley. "When you're talking about the force of three grapes pushing something with a mass of millions of tons, it takes a lot of high-precision measurements over a long time to see any orbital changes. Fortunately, the Arecibo Observatory provided a dozen years of great radar data, and we were able to see it."

The final piece to the puzzle was provided by Josh Emery of the University of Tennessee, Knoxville, who used NASA's Spitzer Space Telescope in 2007 to study the space rock's thermal characteristics. Emery's measurements of the infrared emissions from 1999 RQ36 allowed him to derive the object's temperatures. From there he was able to determine the degree to which the asteroid is covered by an insulating blanket of fine material, which is a key factor for the Yarkovsky effect.

With the asteroid's orbit, size, thermal properties and propulsive force (Yarkovsky effect) understood, Chesley was able to perform the space rock scientist equivalent of solving for "X" and calculate its bulk density.

"While 1999 RQ36 weighs in at about 60 million metric tons, it is about a half kilometer across," said Chesley. "That means it has about the same density as water, so it's more than likely a very porous jumble of rocks and dust."

Asteroid 1999 RQ36 is of particular interest to NASA as it is the target of the agency's OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) mission. Scheduled for launch in 2016, ORIRIS-Rex will visit 1999 RQ36, collect samples from the asteroid and return them to Earth.

NASA detects, tracks and characterizes asteroids and comets passing relatively close to Earth using both ground- and space-based telescopes. The Near-Earth Object Observations Program, commonly called "Spaceguard," discovers these objects, characterizes a subset of them, and establishes their orbits to determine if any could be potentially hazardous to our planet.

.


Related Links
Near-Earth Objects at JPL
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








IRON AND ICE
NASA Scientist Figures Way to Weigh Space Rock
Pasadena CA (JPL) May 25, 2012
A scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif., has accurately determined the mass of a nearby asteroid from millions of miles away. The celestial equivalent of "guess your weight" was achieved by Steve Chesley of JPL's Near-Earth Object Program Office by utilizing data from three NASA assets - the Goldstone Solar System Radar in the California desert, the orbiting Spitzer S ... read more


IRON AND ICE
NASA Offers Guidelines To Protect Historic Sites On The Moon

Neil Armstrong gives rare interview - to accountant

Perigee "Super Moon" On May 5-6

India's second moon mission Chandrayaan-2 to wait

IRON AND ICE
Waking Up with the Sun's Rays

NASA Funded Research Shows Existence of Reduced Carbon on Mars

Did Ancient Mars Have a Runaway Greenhouse?

Opportunity Drives to Dusty Patch of Soil

IRON AND ICE
New Moon for India

Boeing Completes Software PDR Of New Crew Ship

NASA hails 'new era' in exploration

CU astronaut-alumnus Scott Carpenter looks back at 50th anniversary of Aurora 7 mission

IRON AND ICE
Tiangong 1 Ready To Meet Shenzhou 9

Sri Lanka plans to launch its first satellite in 2015

When Will Shenzhou 9 Be Launched

China's space women wait for blast-off

IRON AND ICE
Capillarity in Space - Then and Now, 1962-2012

Dragon on board

SpaceX Launches Falcon 9 Dragon on Historic Mission

SpaceX Dragon Transports Student Experiments to Space Station

IRON AND ICE
Ariane 5 booster roars into life

Sea Launch Prepares for the Launch of Intelsat-19

SpaceX capsule has 'new car' smell, astronauts say

SpaceX makes final approach to space station

IRON AND ICE
Newfound exoplanet may turn to dust

Cosmic dust rings no guarantee of planets

In search of new 'Earths' beyond our Solar System

Free-floating planets in the Milky Way outnumber stars by factors of thousands

IRON AND ICE
Samsung releases Chrome desktop computer

Japan firm unveils radiation-gauging smartphone

NTU and I2R scientists invent revolutionary chipset for high-speed wireless data transfer

Global mobile payments to top $171 bn: survey




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement