Subscribe free to our newsletters via your
. 24/7 Space News .




PHYSICS NEWS
NASA Pursues New Geodesy Application for Emerging Atom-Optics Technology
by Lori Keesey for Goddard Space Flight Center
Greenbelt MD (SPX) Nov 07, 2013


Cataclysmic events, such as this artist's rendition of a binary-star merger, are believed to create gravitational waves that cause ripples in space-time. Image Credit: NASA

NASA technologists working to advance a pioneering technology that promises to detect tiny perturbations in the curvature of space-time now want to apply the same technique to map variations in Earth's gravity field.

The NASA Innovative Advanced Concepts or NIAC program, which funds high-risk, potentially revolutionary technologies, recently awarded Phase-2 funding to Babak Saif, a technologist at NASA's Goddard Space Flight Center in Greenbelt, Md., and his team to continue developing an atom interferometer. With its potential picometer-level sensitivity, the instrument may one day detect what so far has remained imperceptible: gravitational waves or ripples in space-time caused when massive celestial objects move and disrupt the space around them.

However, detecting these infinitesimally small ripples - predicted by famed physicist Albert Einstein, but never directly observed - isn't the only application for the technology, said Bernie Seery, a Goddard executive who was instrumental in establishing Goddard's strategic alliance with Stanford University in Stanford, Calif., and AOSense Inc. in Sunnyvale, Calif. Both have received Defense Advanced Research Projects Agency (DARPA) funding to build and ruggedize atom optics-based sensors for a number of terrestrial applications.

The Goddard team now believes the technology also is ideal for geodesy, the science of measuring and monitoring Earth's size, shape and gravitational field.

More Powerful Interferometer
At its core, atom interferometry works much like optical interferometry, a 200-year-old technique widely used in science and industry to measure small displacements in objects. It obtains measurements by comparing light that has been split into two equal halves. Because the path that one beam travels is fixed in length and the other travels an extra distance or in some other slightly different way, the two light beams overlap and interfere when they meet up, creating an interference pattern that scientists inspect to obtain highly precise measurements.

Atom interferometry, however, hinges on quantum mechanics, the theory that describes how matter behaves at sub-microscopic scales. Just as waves of light can act like particles called photons, atoms can be cajoled into acting like waves if cooled to near absolute zero. At those frigid temperatures, which scientists achieve by firing a laser at the atom, its velocity slows to nearly zero. By firing another series of laser pulses at laser-cooled atoms, scientists put them into what they call a "superposition of states."

In other words, the atoms have different momenta permitting them to separate spatially and be manipulated to fly along different trajectories. Eventually, they cross paths and recombine at the detector, just as with a traditional interferometer. The power of atom interferometry is its precision. If the path an atom takes varies by even a picometer, an atom interferometer would be able to detect the difference.

Goddard Eyes Geodesy Application
With this level of precision, the technology could not only map Earth's gravitational field, which appears lumpy due to the uneven distribution of mass, but also chart how it changes over time.

"The gravitational field changes because of lots of reasons, including the influences of the sun and moon, but the most significant is due to the change in water mass, which includes Earth's ice sheets, oceans, ground water, lakes and rivers," said Scott Luthcke, a Goddard Planetary Geodynamics Laboratory scientist, who is working on the application. "If a glacier or ice sheet melts, this will affect mass distribution, and therefore, Earth's gravitational field."

By gathering both spatial and temporal measurements, scientists have another tool for studying Earth's response to climate change, he added. "In essence, you capture the Earth's mass changing in fine detail and over time."

Using Goddard research-and-development program funding, the team is adapting an atom optics-based gravity gradiometer that AOSense has developed primarily for terrestrial purposes under DARPA funding.

The instrument, which the military currently is demonstrating in field trials under harsh environmental conditions, is up to three orders-of-magnitude more sensitive than comparable technology. Once modified for use in a microgravity environment, it could potentially succeed NASA's Gravity Recovery and Climate Experiment or GRACE, a two-satellite mission that has generated since its launch in 2002 monthly gravity maps showing how mass is distributed and how it changes over time, Seery said.

"This unique sensor is capable of significantly improved spatial resolution and greater accuracy detecting surface-mass changes, eliminating the need for a two-satellite system, as with GRACE. Consequently, we could choose to save money by deploying only one satellite or we could opt for even greater accuracy by deploying a second in a complimentary orbit," Luthcke added.

"This technology is a significant step forward and would provide an extraordinary data set for understanding Earth's water cycle and its response to climate change."

.


Related Links
NASA Goddard technology
The Physics of Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





PHYSICS NEWS
Gravitational waves "know" how black holes grow
Canberra, Australia (SPX) Oct 22, 2013
A paper in the journal Science pits the front-running ideas about the growth of supermassive black holes against observational data - a limit on the strength of gravitational waves from pairs of black holes, obtained with CSIRO's 64-m Parkes radio telescope in eastern Australia. The study was jointly led by Dr Ryan Shannon, a Postdoctoral Fellow with CSIRO, and Mr Vikram Ravi, a PhD studen ... read more


PHYSICS NEWS
Moon mission yields clues to face of 'man in the moon'

Shanghai-built lunar rover set for lunar landing

Crowdfunded Lunar Spacecraft Reaches Funding Milestone

LADEE Continues To Settle Into Operational Lunar Orbit

PHYSICS NEWS
Multiple Missions Will Get China Moving On Mars

Mythbusting India's Mars Mission

India reaches for Mars on prestige space mission

India mission to Mars blasts off successfully

PHYSICS NEWS
NASA Selects Research Teams for New Virtual Institute

From North Pole to the stars: Russia's thrill-seeking tycoon

A look at recent tech sector IPOs

NASA's Orion Spacecraft Comes to Life

PHYSICS NEWS
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

PHYSICS NEWS
Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

Mission accomplished for Europe's cargo freighter

PHYSICS NEWS
Kazakhstan say Baikonur launch site may be open to Western countries

ESA Swarm launch postponed

Europe's fifth ATV for launch by Arianespace begins its pre-flight checkout at the Spaceport

ILS Proton Launches Sirius FM-6 Satellite

PHYSICS NEWS
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

PHYSICS NEWS
NASA Technologists Embrace Laser Instrument Challenge

High Energy Prairie View A and M Interns Collaborate with NASA Goddard on Radiation Effects Research

Less Toxic Metabolites, More Chemical Product

A noble yet simple way to synthesize new metal-free electrocatalysts for oxygen reduction reaction




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement