Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
NASA's Fermi Probes "Dragons" Of The Gamma-Ray Sky
by Staff Writers
Washington DC (SPX) Mar 03, 2010


This view of the gamma-ray sky is constructed from one year of Fermi Large Area Telescope (LAT) observations. The blue color includes the extragalactic gamma-ray background. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts - about 120 million times the energy of visible light - from different sky directions. Brighter colors represent higher rates. Credit: NASA/DOE/Fermi LAT Collaboration

One of the pleasures of perusing ancient maps is locating regions so poorly explored that mapmakers warned of dragons and sea monsters. Now, astronomers using NASA's Fermi Gamma-ray Space Telescope find themselves in the same situation as cartographers of old.

A new study of the ever-present fog of gamma rays from sources outside our galaxy shows that less than a third of the emission arises from what astronomers once considered the most likely suspects - black-hole-powered jets from active galaxies.

"Active galaxies can explain less than 30 percent of the extragalactic gamma-ray background Fermi sees," said Marco Ajello, an astrophysicist at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), jointly located at SLAC National Accelerator Laboratory and Stanford University, Calif.

"That leaves a lot of room for scientific discovery as we puzzle out what else may be responsible."

Ajello presented his findings Tuesday at a meeting of the American Astronomical Society's High-Energy Astrophysics Division in Waikoloa, Hawaii.

The sky glows in gamma rays even far away from bright sources, such as pulsars and gas clouds within our own Milky Way galaxy or the most luminous active galaxies. According to the conventional explanation, this background glow represents the accumulated emission of a vast number of active galaxies that are simply too faint and too distant to be resolved as discrete gamma-ray sources.

"Thanks to Fermi, we now know for certain that this is not the case," Ajello said. A paper on the findings has been submitted to The Astrophysical Journal.

Active galaxies possess central black holes containing millions to billions of times the sun's mass. As matter falls toward the black hole, some of it becomes redirected into jets of particles traveling near the speed of light.

These particles can produce gamma rays in two different ways. When one strikes a photon of visible or infrared light, the photon can gain energy and become a gamma ray. If one of the jet's particles strikes the nucleus of a gas atom, the collision can briefly create a particle called a pion, which then rapidly decays into a pair of gamma rays.

Launched on June 11, 2008, the Fermi Gamma-ray Space Telescope is continually mapping the gamma-ray sky. The mission is a partnership between astrophysics and particle physics, developed in collaboration with NASA and the U.S. Department of Energy and including important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the U.S.

The team analyzed data acquired by Fermi's Large Area Telescope (LAT) during the observatory's initial year in space. The first challenge was eliminating emissions from our own galaxy.

"The extragalactic background is very faint, and it's easily confused with the bright emission from the Milky Way," said Markus Ackermann, another member of the Fermi LAT team at KIPAC who led the measurement study. "We have done a very careful job in separating the two components to determine the background's absolute level."

A separate paper describing the background measurement will appear in the March 12 issue of the journal Physical Review Letters.

Ajello and his colleagues then compared emissions from active galaxies that Fermi detected directly against the number needed to produce the observed extragalactic background. Between energies of 0.1 and 100 billion electron volts (GeV) - or from about 100 million to 30 billion times the energy of visible light - active galaxies turn out to be only minor players.

So, what else may contribute to the extragalactic gamma-ray background? "Particle acceleration occurring in normal star-forming galaxies is a strong contender," Ackermann explained. "So is particle acceleration during the final assembly of the large-scale structure we observe today, for example, where clusters of galaxies are merging together."

And there's always dark matter, the mysterious substance that neither produces nor obscures light but whose gravity corrals normal matter. "Dark matter may be a type of as-yet-unknown subatomic particle. If that's true, dark matter particles may interact with each other in a way that produces gamma rays," Ajello added.

Improved analysis and extra sky exposure will enable the Fermi team to address these potential contributions. For now, though, the best that can be said about the extragalactic gamma-ray background is: Here, there be dragons.

.


Related Links
Fermi Gamma-ray Space Telescope
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Are TGFs Hazardous To Air Travellers
Huntsville AL (SPX) Feb 17, 2010
Huntsville AL (SPX) Feb 17, 2010 Instruments scanning outer space for cataclysmic explosions called gamma-ray bursts are detecting intense flashes of gamma-ray energy right here in the friendly skies of Earth. These terrestrial gamma-ray flashes, or TGFs, blast through thunderstorms close to the altitude where commercial airliners fly. In fact, they could be too close for comfort. I ... read more


STELLAR CHEMISTRY
NASA radar finds ice on moon's north pole

NASA Radar Finds Ice Deposits At Moon's North Pole

Into A Volcano To Test Suitcase-Sized Science Lab

US lunar pull-out leaves China shooting for moon

STELLAR CHEMISTRY
Radar Map Of Buried Martian Ice Adds To Climate Record

A Glow In The Martian Night

Mars Odyssey Still Hears Nothing From Phoenix

Investigating Material Ejected From Young Crater

STELLAR CHEMISTRY
LockMart Orion Team Fabricates World's Largest Heat Shield Structure

NASA Increases Support Contract To Mid-Atlantic Regional Spaceport

Northrop Grumman Foundation Weightless Flights Of Discovery

SwRI Announces Pioneering Program To Fly Next-Gen Suborbital Experiments With Crew

STELLAR CHEMISTRY
China's space station plan delayed for 'technical reasons'

UK's First China Space Race Exhibition Launched

No Spacewalk From Tiangong-1

China's Mystery Spacelab

STELLAR CHEMISTRY
Orbital Sciences Selects GS Yuasa to Power Cargo Transport Missions To ISS

Canada to boost space research

Space agencies find new use for 'Leonardo'

Endeavour Home After Completing A Special Delivery To ISS

STELLAR CHEMISTRY
Arianespace At World Satellite Risk Forum 2010

Student Rocket REXUS 7 Launched

OHO-1 Satellite To Be Launched By Arianespace

Eutelsat's W3B On Fast Track For Ariane 5 Launch

STELLAR CHEMISTRY
How To Hunt For Exoplanets

Watching A Planetary Death March

Seeing ExoPlanet Atmospheres From The Ground

New Technique For Detecting Earth-Like Planets

STELLAR CHEMISTRY
USAF Eyes Mini-Thrusters For Use In Satellite Propulsion

World's top high-tech fair goes 3D

New Device For Ultrafast Optical Communications

Rice Researchers Make Graphene Hybrid




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement