Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
NASA, ESA Telescopes Give Shape to Furious Black Hole Winds
by Staff Writers
Pasadena CA (JPL) Feb 20, 2015


This plot of data from two space telescopes, NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Space Agency's (ESA's) XMM-Newton determines for the first time the shape of ultra-fast winds from supermassive black holes, or quasars. Image courtesy NASA/JPL-Caltech/Keele Univ. For a larger version of this image please go here.

NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA's (European Space Agency) XMM-Newton telescope are showing that fierce winds from a supermassive black hole blow outward in all directions - a phenomenon that had been suspected, but difficult to prove until now.

This discovery has given astronomers their first opportunity to measure the strength of these ultra-fast winds and prove they are powerful enough to inhibit the host galaxy's ability to make new stars.

"We know black holes in the centers of galaxies can feed on matter, and this process can produce winds. This is thought to regulate the growth of the galaxies," said Fiona Harrison of the California Institute of Technology (Caltech) in Pasadena, California. Harrison is the principal investigator of NuSTAR and a co-author on a new paper about these results appearing in the journal Science. "Knowing the speed, shape and size of the winds, we can now figure out how powerful they are."

Supermassive black holes blast matter into their host galaxies, with X-ray-emitting winds traveling at up to one-third the speed of light. In the new study, astronomers determined PDS 456, an extremely bright black hole known as a quasar more than 2 billion light-years away, sustains winds that carry more energy every second than is emitted by more than a trillion suns.

"Now we know quasar winds significantly contribute to mass loss in a galaxy, driving out its supply of gas, which is fuel for star formation," said the study's lead author, Emanuele Nardini of Keele University in England.

NuSTAR and XMM-Newton simultaneously observed PDS 456 on five separate occasions in 2013 and 2014. The space telescopes complement each other by observing different parts of the X-ray light spectrum: XMM-Newton views low-energy and NuSTAR views high-energy.

Previous XMM-Newton observations had identified black-hole winds blowing toward us, but could not determine whether the winds also blew in all directions. XMM-Newton had detected iron atoms, which are carried by the winds along with other matter, only directly in front of the black hole, where they block X-rays.

The scientists combined higher-energy X-ray data from NuSTAR with observations from XMM-Newton. By doing this, they were able to find signatures of iron scattered from the sides, proving the winds emanate from the black hole not in a beam, but in a nearly spherical fashion.

"This is a great example of the synergy between XMM-Newton and NuSTAR," said Norbert Schartel, XMM-Newton project scientist at ESA. "The complementarity of these two X-ray observatories is enabling us to unveil previously hidden details about the powerful side of the universe."

With the shape and extent of the winds known, the researchers could then determine the strength of the winds and the degree to which they can inhibit the formation of new stars.

Astronomers think supermassive black holes and their home galaxies evolve together and regulate each other's growth. Evidence for this comes in part from observations of the central bulges of galaxies - the more massive the central bulge, the larger the supermassive black hole.

This latest report demonstrates a supermassive black hole and its high-speed winds greatly affect the host galaxy. As the black hole bulks up in size, its winds push vast amounts of matter outward through the galaxy, which ultimately stops new stars from forming.

Because PDS 456 is relatively close, by cosmic standards, it is bright and can be studied in detail. This black hole gives astronomers a unique look into a distant era of our universe, around 10 billion years ago, when supermassive black holes and their raging winds were more common and possibly shaped galaxies as we see them today.

"For an astronomer, studying PDS 456 is like a paleontologist being given a living dinosaur to study," said study co-author Daniel Stern of NASA's Jet Propulsion Laboratory in Pasadena. "We are able to investigate the physics of these important systems with a level of detail not possible for those found at more typical distances, during the 'Age of Quasars.'"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
NuSTAR
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Interstellar technology throws light on spinning black holes
Washington DC (SPX) Feb 18, 2015
The team responsible for the Oscar-nominated visual effects at the centre of Christopher Nolan's epic, Interstellar, have turned science fiction into science fact by providing new insights into the powerful effects of black holes. In a paper published 13 February, in IOP Publishing's journal Classical and Quantum Gravity, the team describe the innovative computer code that was used to gene ... read more


TIME AND SPACE
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

TIME AND SPACE
The highest plume ever observed on Mars

Mars One cuts list of potential colonists to 100

Mystery Mars plume baffles scientists

Up, Up and Away! First Humans Chosen for Mission to Mars

TIME AND SPACE
The ISS Menu: Mayo, Espressos, Booze? Cosmonauts Reveal Their Secrets

Sensors Detect Icing Conditions to Help Protect Airplanes

Industry: Risk aversion costs more than 'fast failure'

Boeing's Space Efforts to Be Managed by Newly Created Organization

TIME AND SPACE
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

TIME AND SPACE
Spacesuit woes haunt NASA ahead of crucial spacewalks

Russia Launches Fresh Fruit, Oxygen to Crew on ISS

Space Station 3-D Printed Items, Seedlings Return in the Belly of a Dragon

NASA preparing to reassemble International Space Station

TIME AND SPACE
Moog offers "SoftRide" for enhanced spacecraft protection during launch

Russian-Ukrainian Satan Rocket to Launch South Korean Satellite as Planned

Leaders share messages, priorities at AFA Symposium

Soyuz Installed at Baikonur, Expected to Launch Wednesday

TIME AND SPACE
Laser 'ruler' holds promise for hunting exoplanets

The mystery of cosmic oceans and dunes

Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

TIME AND SPACE
Arachnid Rapunzel: Researchers spin spider silk proteins into artificial silk

Breakthrough may lead to industrial production of graphene devices

New design tool for metamaterials

New self-stretching material developed at University of Rochester




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.