Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
NASA's Chandra adds to black hole birth announcement
by Staff Writers
Boston MA (SPX) Nov 18, 2011


Over three decades ago, Stephen Hawking placed - and eventually lost - a bet against the existence of a black hole in Cygnus X-1. This is an X-ray image of Cygnus X-1 from the Chandra X-ray Observatory. Credit: NASA/CXC.

New details about the birth of a famous black hole that took place millions of years ago have been uncovered, thanks to a team of scientists who used data from NASA's Chandra X-ray Observatory as well as from radio, optical and other X-ray telescopes.

Over three decades ago, Stephen Hawking placed - and eventually lost - a bet against the existence of a black hole in Cygnus X-1. Today, astronomers are confident the Cygnus X-1 system contains a black hole, and with these latest studies they have remarkably precise values of its mass, spin, and distance from Earth. With these key pieces of information, the history of the black hole has been reconstructed.

"This new information gives us strong clues about how the black hole was born, what it weighed and how fast it was spinning," said author Mark Reid of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass.

"This is exciting because not much is known about the birth of black holes."

Reid led one of three papers - all appearing in the November 10th issue of The Astrophysical Journal - describing these new results on Cygnus X-1. The other papers were led by Jerome Orosz from San Diego State University and Lijun Gou, also from CfA.

Cygnus X-1 is a so-called stellar-mass black hole, a class of black holes that comes from the collapse of a massive star. The black hole is in close orbit with a massive, blue companion star.

Using X-ray data from Chandra, the Rossi X-ray Timing Explorer, and the Advanced Satellite for Cosmology and Astrophysics, a team of scientists was able to determine the spin of Cygnus X-1 with unprecedented accuracy, showing that the black hole is spinning at very close to its maximum rate. Its event horizon - the point of no return for material falling towards a black hole - is spinning around more than 800 times a second.

An independent study that compared the evolutionary history of the companion star with theoretical models indicates that the black hole was born some 6 million years ago. In this relatively short time (in astronomical terms), the black hole could not have pulled in enough gas to ramp up its spin very much. The implication is that Cygnus X-1 was likely born spinning very quickly.

Using optical observations of the companion star and its motion around its unseen companion, the team made the most precise determination ever for the mass of Cygnus X-1, of 14.8 times the mass of the Sun. It was likely to have been almost this massive at birth, because of lack of time for it to grow appreciably.

"We now know that Cygnus X-1 is one of the most massive stellar black holes in the Galaxy," said Orosz. "And, it's spinning as fast as any black hole we've ever seen."

Knowledge of the mass, spin and charge gives a complete description of a black hole, according to the so-called "No Hair" theorem. This theory postulates that all other information aside from these parameters is lost for eternity behind the event horizon. The charge for an astronomical black hole is expected to be almost zero, so only the mass and spin are needed.

"It is amazing to me that we have a complete description of this asteroid-sized object that is thousands of light years away," said Gou. "This means astronomers have a more complete understanding of this black hole than any other in our Galaxy."

The team also announced that they have made the most accurate distance estimate yet of Cygnus X-1 using the National Radio Observatory's Very Long Baseline Array (VLBA). The new distance is about 6,070 light years from Earth. This accurate distance was a crucial ingredient for making the precise mass and spin determinations.

The radio observations also measured the motion of Cygnus X-1 through space, and this was combined with its measured velocity to give the three-dimensional velocity and position of the black hole.

This work showed that Cygnus X-1 is moving very slowly with respect to the Milky Way, implying it did not receive a large "kick" at birth. This supports an earlier conjecture that Cygnus X-1 was not born in a supernova, but instead may have resulted from the dark collapse of a progenitor star without an explosion.

The progenitor of Cygnus X-1 was likely an extremely massive star, which initially had a mass greater than about 100 times the sun before losing it in a vigorous stellar wind.

In 1974, soon after Cygnus X-1 became a good candidate for a black hole, Stephen Hawking placed a bet with fellow astrophysicist Kip Thorne, a professor of theoretical physics at the California Institute of Technology, that Cygnus X-1 did not contain a black hole. This was treated as an insurance policy by Hawking, who had done a lot of work on black holes and general relativity.

By 1990, however, much more work on Cygnus X-1 had strengthened the evidence for it being a black hole. With the help of family, nurses, and friends, Hawking broke into Thorne's office, found the framed bet, and conceded.

"For forty years, Cygnus X-1 has been the iconic example of a black hole. However, despite Hawking's concession, I have never been completely convinced that it really does contain a black hole - until now," said Thorne. "The data and modeling described in these three papers at last provide a completely definitive description of this binary system."

.


Related Links
Chandra X-ray Center
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
APEX gives us a new view of star formation in the Carina Nebula
Munich, Germany (ESO) Nov 17, 2011
Using the LABOCA camera on the Atacama Pathfinder Experiment (APEX) telescope on the plateau of Chajnantor in the Chilean Andes, a team of astronomers led by Thomas Preibisch (Universitats-Sternwarte Munchen, Ludwig-Maximilians-Universitat, Germany), in close cooperation with Karl Menten and Frederic Schuller (Max-Planck-Institut fur Radioastronomie, Bonn, Germany), imaged the region in submilli ... read more


STELLAR CHEMISTRY
LRO Camera Team Releases High Resolution Global Topographic Map of Moon

Mystery of the Lunar Ionosphere

Ancient Lunar Dynamo May Explain Magnetized Moon Rocks

Ancient Lunar Dynamo May Explain Magnetized Moon Rocks

STELLAR CHEMISTRY
'Frustration' in Europe over joint Mars probe: NASA

NASA readies launch of 'dream machine' to Mars

Contact with Russian Mars probe 'unlikely' - expert

Mars explorers will include women, experts say

STELLAR CHEMISTRY
Weightless US teachers eye giant science leap

Allianz and International Space Transport Association partner in space tourism industry

US honors astronauts for pioneering space flights

Raytheon and Petrofac Partner to Provide Water Survival Training at NASA

STELLAR CHEMISTRY
China launches two satellites: state media

Shenzhou-8 departs from in-orbit lab, ready for return

China's spacecraft comes back to Earth

Shenzhou for Dummies

STELLAR CHEMISTRY
New Trio Welcomed Aboard Station, Gets to Work

Maintaining Crew Health One Step at a Time

Russian spacecraft delivers new crew to ISS

Soyuz Docks At ISS, Hatch Opened

STELLAR CHEMISTRY
Mobile Launcher Moves to Launch Pad

Rocket engineer Wolfgang Jung a logistics expert for space science

Arianespace to launch satellite for DIRECTV Latin America

Delta Mariner offloads launch components at Vandenberg

STELLAR CHEMISTRY
Exo planet count tops 700

Giant planet ejected from the solar system

Three New Planets and a Mystery Object Discovered Outside Our Solar System

Dwarf planet sized up accurately as it blocks light of faint star

STELLAR CHEMISTRY
New 'smart' material could help tap medical potential of tissue-penetrating light

Orbital-Built Intelsat 18 Communications Satellite Completes In-Orbit Testing

Amazon sells Kindle Fire below cost: research firm

World's lightest material invented




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement