Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
NASA's Chandra Finds Massive Black Holes Common in Early Universe
by Staff Writers
Huntsville AL (SPX) Jun 17, 2011


Composite image of Chandra Deep Field South. (X-ray: NASA/CXC/U.Hawaii/ E.Treister et al; Infrared: NASA/STScI/UC Santa Cruz/G.Illingworth et al; Optical: NASA/STScI/S.Beckwith et al)

Using the deepest X-ray image ever taken, astronomers found the first direct evidence that massive black holes were common in the early universe. This discovery from NASA's Chandra X-ray Observatory shows that very young black holes grew more aggressively than previously thought, in tandem with the growth of their host galaxies.

By pointing Chandra at a patch of sky for more than six weeks, astronomers obtained what is known as the Chandra Deep Field South (CDFS). When combined with very deep optical and infrared images from NASA's Hubble Space Telescope, the new Chandra data allowed astronomers to search for black holes in 200 distant galaxies, from when the universe was between about 800 million to 950 million years old.

"Until now, we had no idea what the black holes in these early galaxies were doing, or if they even existed," said Ezequiel Treister of the University of Hawaii, lead author of the study appearing in the June 16 issue of the journal Nature. "Now we know they are there, and they are growing like gangbusters."

The super-sized growth means that the black holes in the CDFS are less extreme versions of quasars - very luminous, rare objects powered by material falling onto supermassive black holes. However, the sources in the CDFS are about a hundred times fainter and the black holes are about a thousand times less massive than the ones in quasars.

The observations found that between 30 and 100 percent of the distant galaxies contain growing supermassive black holes. Extrapolating these results from the small observed field to the full sky, there are at least 30 million supermassive black holes in the early universe. This is a factor of 10,000 larger than the estimated number of quasars in the early universe.

"It appears we've found a whole new population of baby black holes," said co-author Kevin Schawinski of Yale University. "We think these babies will grow by a factor of about a hundred or a thousand, eventually becoming like the giant black holes we see today almost 13 billion years later."

A population of young black holes in the early universe had been predicted, but not yet observed. Detailed calculations show that the total amount of black hole growth observed by this team is about a hundred times higher than recent estimates.

Because these black holes are nearly all enshrouded in thick clouds of gas and dust, optical telescopes frequently cannot detect them. However, the high energies of X-ray light can penetrate these veils, allowing the black holes inside to be studied.

Physicists studying black holes want to know more how the first supermassive black holes were formed and how they grow. Although evidence for parallel growth of black holes and galaxies has been established at closer distances, the new Chandra results show that this connection starts earlier than previously thought, perhaps right from the origin of both.

"Most astronomers think in the present-day universe, black holes and galaxies are somehow symbiotic in how they grow," said Priya Natarajan, a co-author from Yale University. "We have shown that this codependent relationship has existed from very early times."

It has been suggested that early black holes would play an important role in clearing away the cosmic "fog" of neutral, or uncharged, hydrogen that pervaded the early universe when temperatures cooled down after the Big Bang. However, the Chandra study shows that blankets of dust and gas stop ultraviolet radiation generated by the black holes from traveling outwards to perform this "reionization." Therefore, stars and not growing black holes are likely to have cleared this fog at cosmic dawn.

Chandra is capable of detecting extremely faint objects at vast distances, but these black holes are so obscured that relatively few photons can escape and hence they could not be individually detected. Instead, the team used a technique that relied on Chandra's ability to accurately determine the direction from which the X-rays came to add up all the X-ray counts near the positions of distant galaxies and find a statistically significant signal.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

.


Related Links
Chandra
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Star-eating black hole sends flash from distant galaxy
Washington (AFP) June 16, 2011
A bright gamma-ray flash seen in March came from a distant galaxy nearly four billion light years away where a Sun-sized star was being eaten by a black hole, US astronomers said Thursday. The energy from the cataclysmic blast is still being observed two and a half months later, said the study published in the journal Science. "This is truly different from any explosive event we have see ... read more


TIME AND SPACE
CMU and Astrobotic Technology Complete Structural Assembly of Lunar Lander

Blood Red Moon Predicted

NASA Releases New Lunar Eclipse Video

The Power of A Moon Rock

TIME AND SPACE
Countering Contamination for Mars Spacesuits

Opportunity Breaks Backward Driving Record

Entry, descent and surface science for 2016 Mars mission

Up, Up and Away for Mars

TIME AND SPACE
Iran to put a monkey into space: report

Despite budget stress, US space ties strong: NASA

International Conference On Low-Cost Planetary Missions

From Backpacking to Space Trekking

TIME AND SPACE
China's second moon orbiter Chang'e-2 goes to outer space

Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

Venezuela, China to launch satellite next year

TIME AND SPACE
European space freighter poised for suicide plunge

Keeping Cool With Heat Pipes on the Space Station

Russia's Mission Control raises ISS orbit by 19.2 km

Japan astronaut tweets about space sickness

TIME AND SPACE
Arianespace receives the next Ariane 5 for launch in 2011

SpaceX Secures Launch Contract In Major Asian Market

SES-3 Satellite Arrives At Baikonour Launch Base

Shipments Of Sea Launch Zenit-3Sl Hardware Resume On Schedule

TIME AND SPACE
CoRoT's new detections highlight diversity of exoplanets

Rage Against the Dying of the Light

Second Rocky World Makes Kepler-10 a Multi-Planet System

Kepler's Astounding Haul of Multiple-Planet Systems Just Keeps Growing

TIME AND SPACE
Coming to TV Screens of the Future: A Sense of Smell

Gamers griping handheld controls

Microsoft Kinect makes moves on computers

Sporian Developing High Temperature Pressure Sensor for NASA




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement