Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Moving origami techniques forward for self-folding 3-D structures
by Staff Writers
Amherst MA (SPX) Jan 13, 2015


These are three-dimensional reconstructions (from confocal fluorescence microscopy) of self-folded origami structures with overall dimensions slightly below 1 mm. At left is a bird based on the design "New Flapping Bird" by Randlett, and at right an octahedron-tetrahedron ('octet') truss design independently discovered by many origamists including Huffman, Kawasaki and Resch. Image courtesy UMass Amherst.

Though the past 15 years have seen an exciting run of creative scientific advances in fabricating three-dimensional (3D) structures by self-folding of 2D sheets, the complexity of structures achieved to date falls far short of what can easily be folded by hand using paper, says polymer scientist Ryan Hayward at the University of Massachusetts Amherst.

While the Japanese art of origami has been "a rich source of inspiration" for scientists working to construct such 3D forms, the limitation to simple shapes has held up development of new applications in areas such as biomimetic systems, soft robotics and mechanical meta-materials, especially for structures on small length scales where traditional manufacturing processes fail. Now, however, a team led by Hayward has developed an approach that could open the door to a new wave of discoveries.

He and Junhee Na, Arthur Evans and Christian Santangelo at UMass Amherst, with several other collaborators, have found a way to make reversibly self-folding origami structures on small length scales using ultraviolet photolithographic patterning of photo-crosslinkable polymers. Details appear in the current issue of Advanced Materials.

Hayward says, "We have designed and implemented a simple approach that consists of sandwiching a thin layer of a temperature-responsive hydrogel with two patterned films of a rigid plastic. The presence of gaps in the plastic layers allows for folding by a controlled amount in a specified direction, enabling the formation of fairly complex origami structures."

The UMass Amherst team uses a maskless lithographic technique based on a digital micromirror array device to spatially pattern the crosslinking of the polymer films, and then dissolves away the uncross-linked regions with a solvent. By directly patterning the polymer films, rather than using a traditional photolithographic approach based on a photoresist layer, it is possible to pattern multiple layers of polymers with widely contrasting material properties using relatively few processing steps, he explains.

In biomedicine or bioengineering, this new approach may help in developing advanced self-deploying implantable medical devices, or in guiding the growth of cells into complex tissues and organs.

The authors feel their data "suggest a clear pathway for future improvements" in the minimum achievable size and maximum achievable complexity of self-folded structures, "simply by using thinner films to enable tighter curvatures, along with improved lithographic methods to allow for patterning of smaller folds."

Instead of following the step-by-step actuation of folds in a controlled sequence characteristic of traditional origami, the new method relies on "collapse" designs, in which all folds are accomplished more or less simultaneously.

"Collapse-type origami designs have not been thoroughly explored in the past because of the difficulty of actuating tens or hundreds of folds with human hands; our technique removes this restriction and we expect that with the actuation scalability provided by our technique, vastly more complex collapsible structures may now be readily explored."

They expect that the new platform they designed will be useful "for future studies addressing fundamental questions about the mechanics of self-folded structures, as well as for applications in microrobotics, biomedical devices and mechanical metamaterials."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Massachusetts at Amherst
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Transforming planar materials into 3-D microarchitectures
Urbana IL (SPX) Jan 11, 2015
In the cover feature article of the journal, Science, researchers at the University of Illinois at Urbana-Champaign describe a unique process for geometrically transforming two dimensional (2D) micro/nanostructures into extended 3D layouts by exploiting mechanics principles similar to those found in children's 'pop-up' books. Complex, 3D micro/nanostructures are ubiquitous in biology, wher ... read more


TECH SPACE
Service module of China's lunar orbiter enters 127-minute orbit

Service Module of Chinese Probe Enters Lunar Orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

TECH SPACE
Crystal-Rich Rock 'Mojave' is Next Mars Drill Target

Team Working on Strategy to Fix Flash Memory Issue

Long-lost British space probe found on Mars: agency

Russia-EU Mars Research Program to Be Completed

TECH SPACE
Long duration weightlessness in space induces a blood shift

Experts explore the medical safety needs of civilian space travel

Singer Sarah Brightman delays space tourist training

U.S. food headed for ISS stalled in Russian customs

TECH SPACE
China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

TECH SPACE
Astronauts take shelter after alarm at space station

Astronauts' year-long mission will test limits

Russia delays decision on using ISS after 2020

Space station worms help battle muscle and bone loss

TECH SPACE
Firefly Space Systems and NASA have Inked Space Act Agreement

Russian firm seals $1 billion deal to supply US rocket engines

SpaceX CEO Elon Musk wants to shake up satellite industry

Vega ready to launch ESA spaceplane

TECH SPACE
Ground-breaking research to discover new planets

NASA releases retro-styled travel posters for newly discovered planets

Meteorites weren't exactly the building blocks of young planets

A twist on planetary origins

TECH SPACE
Atomic placement of elements counts for strong concrete

A novel inorganic material emitting laser light in solution is discovered

Zinc oxide materials tapped for tiny energy harvesting devices

Researchers from MIPT predict properties of surface




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.