Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




ENERGY TECH
Molecular 'sieves' harness ultraviolet irradiation for greener power generation
by Staff Writers
Cambridge, UK (SPX) Jun 13, 2013


Image shows fluorescence of solution (left) and membrane (right) made of a polymer of intrinsic microporosity (PIM-1) under irradiation of ultraviolet (UV) light. The ultraviolet irradiation induces oxidation and surface densification of the polymeric m. Credit: Nature Publishing Group.

New research shows that exposing polymer molecular sieve membranes to ultraviolet (UV) irradiation in the presence of oxygen produces highly permeable and selective membranes for more efficient molecular-level separation, an essential process in everything from water purification to controlling gas emissions.

Published in the journal Nature Communications, the study finds that short-wavelength UV exposure of the sponge-like polymer membranes in the presence of oxygen allows the formation of ozone within the polymer matrix. The ozone induces oxidation of the polymer and chops longer polymer chains into much shorter segments, increasing the density of its surface.

By controlling this 'densification', resulting in smaller cavities on the membrane surface, scientists have found they are able to create a greatly enhanced 'sieve' for molecular-level separation - as these 'micro-cavities' improve the ability of the membrane to selectively separate, to a significant degree, molecules with various sizes , remaining highly permeable for small molecules while effectively blocking larger ones.

The research from the University of Cambridge's Cavendish Laboratory partly mirrors nature, as our planet's ozone layer is created from oxygen hit by ultraviolet light irradiated from the sun.

Researchers have now demonstrated that the 'selectivity' of these newly modified membranes could be enhanced to a remarkable level for practical applications, with the permeability potentially increasing between anywhere from a hundred to a thousand times greater than the current commercially-used polymer membranes.

Scientists believe such research is an important step towards more energy efficient and environmentally friendly gas-separation applications in major global energy processes - ranging from purification of natural gases and hydrogen for sustainable energy production, the production of enriched oxygen from air for cleaner combustion of fossil fuels and more-efficient power generation, and the capture of carbon dioxide and other harmful greenhouse gases.

"Our discoveries lead to better understandings of physics of the novel materials, so we will be able to develop better membranes in the future" said Qilei Song, a researcher in Dr Easan Sivaniah's group and the paper's lead author.

In collaboration with groups at the Department of Materials Science and Metallurgy (Professor Tony Cheetham), University of Cambridge, and at the Chemical Engineering department of Qatar University (Prof. Shaheen Al-Muhtaseb), the researchers confirmed that the size and distribution of free volume accessible to gas molecules within these porous polymeric molecular sieves could be tuned by controlling the kinetics of the ultraviolet light-driven reactions.

Conventional separation technologies, such as cryogenic distillation and amine absorption, are significantly energy-intensive processes. Membrane separation technology is highly attractive to industry, as it has the potential to replace conventional technologies with higher energy efficiency and lower environmental impacts. But gas separation performance of current commercially-available polymer membranes are subject to what scientists describe as "a poor trade-off" between low

permeability levels and high degree of selective molecular separation. The next generation membranes - such as polymers of intrinsic microporosity (PIMs) - being studied at the Cavendish are based on tuning the pore size and interaction with specific molecules to achieve both high permeability and, critically, high selectivity.

Currently, these flat-sheet membranes show great separation performance and are mechanically robust for clean cylinder gases. "We are working on ways to further improve these membranes and our next step is to develop large scale and more practical industrial modules such as thin film composite membranes or hollow fibers with selective layer as thin as possible," said Dr Easan Sivaniah.

"We are also exploring many other applications of these fascinating polymer materials, such as liquid and vapour separation, water treatment by desalination, sensor devices and photolithography technology, and energy storage applications".

.


Related Links
University of Cambridge
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
TTP connects dumb objects to the Internet of Things
Cambridge, UK (SPX) Jun 11, 2013
New battery-free, ultra-low power wireless sensor technology is being developed by UK-based TTP that will add connectivity and intelligence to everyday dumb objects such as medical implants, supermarket labels and engineering components. TTP believes it is through innovative energy harvesting techniques and low energy sensors that the Internet of Things will become a reality and billions of devi ... read more


ENERGY TECH
LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

ENERGY TECH
Marks on Martian Dunes May Reveal Tracks of Dry-Ice Sleds

UH Astrobiologists Find Martian Clay Contains Chemical Implicated in the Origin of Life

Mars Rover Opportunity Trekking Toward More Layers

SciTechTalk: Mars rover readies for 'road trip' on the Red Planet

ENERGY TECH
The Body Electric: Researchers Move Closer to Low-Cost, Implantable Electronics

TED conference sets stage for a week of bright ideas

NASA's Orion Spacecraft Proves Sound Under Pressure

Expert slams Congress over ban on U.S.-China space cooperation

ENERGY TECH
China astronauts enter space module

China to send second woman into space: officials

Tiangong-1 ready for docking and entry

Shenzhou-10 mission to teach students in orbit

ENERGY TECH
Russian cargo supply craft separates from International Space Station

Russian Space Freighter to Depart From Orbital Station

Star Canadian spaceman Chris Hadfield retiring

Experiments, Spacewalk Preps and Maintenance for Crew

ENERGY TECH
Mitsubishi Heavy and Arianespace conclude MOU on commercial launches

Sea Launch IS-27 FROB Report Complete

Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

ENERGY TECH
Kepler Stars and Planets are Bigger than Previously Thought

Astronomers gear up to discover Earth-like planets

Stars Don't Obliterate Their Planets (Very Often)

'Dust trap' around distant star may solve planet formation mystery

ENERGY TECH
Chilean, U.S. firms join effort to expand e-waste recycling

Space Debris - One Solution

Moon Radiation Findings May Reduce Health Risks to Astronauts

Sony eyes long game despite console launch triumph




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement