Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Molecular self-assembly controls graphene-edge configuration
by Staff Writers
Sendai, Japan (SPX) Sep 12, 2014


Graphene nanoribbons are fabricated by molecular assembly on a Cu(111) substrate. On this surface system, GNRs on grow in six azimuthal directions exclusively. White lines in the inset highlight the zigzag edges of a ribbon. Image courtesy Patrick Han.

A research team headed by Prof. Patrick Han and Prof. Taro Hitosugi at the Advanced Institute of Materials Research (AIMR), Tohoku University discovered a new bottom-up fabrication method that produces defect-free graphene nanoribbons (GNRs) with periodic zigzag-edge regions. This method, which controls GNR growth direction and length distribution, is a stepping stone towards future graphene-device fabrication by self-assembly.

Graphene, with its low dimensionality, high stability, high strength, and high charge-carrier mobility, promises to be a revolutionary material for making next-generation high-speed transistors. Moreover, graphene's properties are predicted to be directly controllable by its structure. For example, recent works have demonstrated that the bandgap of armchair GNRs is controlled by the ribbon width.

However, the property-tailoring capabilities of other edge conformations (e.g., the zigzag edge is predicted by theory to have magnetic properties) have not been tested, because their defect-free fabrication remains a major challenge.

"Previous strategies in bottom-up molecular assemblies used inert substrates, such as gold or silver, to give molecules a lot of freedom to diffuse and react on the surface," says Han. "But this also means that the way these molecules assemble is completely determined by the intermolecular forces and by the molecular chemistry." Currently, there is no molecule that can assemble to produce zigzag-edge GNRs.

To target the zigzag edge, the AIMR team used a copper surface-a substrate more reactive than gold or silver-to introduce new substrate-to-molecule interactions, in addition to the intermolecular interactions. The effects of this strategy were demonstrated using a precursor molecule known to form armchair-edge GNRs.

On copper, scanning tunneling microscope images revealed a molecular assembly that is entirely different than that on gold or silver, yielding GNRs with periodic zigzag-edge regions. Future directions include the assessment of other reactive surfaces for bottom-up GNR fabrication, and the determination of the property-tailoring effects of the GNR edges shown in this work.

Moreover, the surface reactivity of the copper substrate also has a profound effect on both the GNR length distribution and surface growth direction. Unlike previous assemblies, the current method produces shorter ribbons, only in six surface azimuthal directions. These features could be exploited for making single graphene interconnections between prefabricated structures by self-assembly.

"Diffusion-controlled assemblies, as seen on gold and silver, produce bundles of long GNRs. These methods are good for making interconnect arrays, but not single connections", Han says. "Our method opens the possibility for self-assembling single graphene devices at desired locations, because of the length and of the direction control."

Patrick Han, Kazuto Akagi, Filippo Federici Canova, Hirotaka Mutoh, Susumu Shiraki, Katsuya Iwaya, Paul S. Weiss, Naoki Asao, Taro Hitosugi, "Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity", ACS Nano, 2014, in press DOI: 10.1021/nn5028642

.


Related Links
Advanced Institute for Materials Research (AIMR), Tohoku University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Buckyballs and diamondoids join forces in tiny electronic gadget
Menlo Park CA (SPX) Sep 11, 2014
Scientists have married two unconventional forms of carbon - one shaped like a soccer ball, the other a tiny diamond - to make a molecule that conducts electricity in only one direction. This tiny electronic component, known as a rectifier, could play a key role in shrinking chip components down to the size of molecules to enable faster, more powerful devices. "We wanted to see what new, e ... read more


CARBON WORLDS
Year's final supermoon is a Harvest Moon

China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

CARBON WORLDS
Flash-Memory Reformat Successful

NASA's Mars Curiosity rover reaches 'far frontier'

NASA's Mars Curiosity Rover Arrives at Martian Mountain

Flash-Memory Reformat On Opportunity Underway

CARBON WORLDS
The long descent

NASA's Orion Spacecraft Nears Completion, Ready for Fueling

Top trends at IFA 2014, Europe's biggest gadget fair

Tech giants bet on 'smart home' revolution

CARBON WORLDS
China eyes working with other nations as station plans develop

China completes construction of advanced space launch facility

China to launch second space lab in 2016: official

China's Space Station is Still On Track

CARBON WORLDS
4th SpaceX Cargo Mission to ISS Dragon Scheduled for Sep 20

Three Russian and American astronauts return to Earth

Science Continues on Orbital Lab While Trio Prepares for Departure

International Space Station accidentally launches satellites on its own

CARBON WORLDS
NASA's Wind-Watching ISS-RapidScat Ready for Launch

Proton Launches May Compete on Price With US Falcons

SpaceX's next cargo launch set for Sept 20

MEASAT-3b and Optus 10 given go-ahead for Ariane 5 Sept 11 launch

CARBON WORLDS
Solar System Simulation Reveals Planetary Mystery

'Hot Jupiters' provoke their own host suns to wobble

First evidence for water ice clouds found outside solar system

NRL Scientist Explores Birth of a Planet

CARBON WORLDS
Not just cool - it's a gas

Where to grab space debris

Grooving Crystal Surfaces Repel Water

U.S. military taps Northrop Grumman for new technology




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.