Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Molecular nano-spies to make light work of disease detection
by Staff Writers
London, UK (SPX) Jan 23, 2014


File image: Professor Cameron Alexander.

A world of cloak-and-dagger pharmaceuticals has come a step closer with the development of stealth compounds programmed to spring into action when they receive the signal.

Researchers at the University of Nottingham's School of Pharmacy have designed and tested large molecular complexes that will reveal their true identity only when they've reached their intended target, like disguised saboteurs working deep behind enemy lines.

The compounds have been developed as part of a five-year programme funded by the Engineering and Physical Sciences Research Council (EPSRC) called "Bar-Coded Materials".

The cloak each spherical complex wears is perhaps more a plastic mac: a sheath of biocompatible polymer that encapsulates and shrouds biologically active material inside, preventing any biological interaction so long as the shield remains in place.

The smart aspect is in the DNA-based zips that hold the coat in place until triggered to undo. Because any DNA code (or "molecular cipher") can be chosen, the release mechanism can be bar-coded so that it is triggered by a specific biomarker - for example a message from a disease gene.

What is then exposed - an active pharmaceutical compound, a molecular tag to attach to diseased tissue, or a molecular beacon to signal activation - depends on what function is needed.

Professor Cameron Alexander, who leads the project, says: "These types of switchable nanoparticles could be extremely versatile. As well as initial detection of a medical condition, they could be used to monitor the progress of diseases and courses of treatment, or adapted to deliver potent drugs at particular locations in a patient's body. It might even become possible to use mobile phones rather than medical scanners to detect programmed responses from later generations of the devices."

In their initial trials, the team has proved the concept works in the test tube - the switchable molecular constructs do respond as expected when presented with the right molecular signals. The group is now working hard to push their idea forwards.

An early application might be in dipstick technology - testing for specific infections in a blood or spit sample, for example. But because the polymer coating (called polyethylene glycol) is biocompatible, the researchers are hopeful that in the long run "self-authenticating medicines" based on the approach could be injected into patients, to seek out diseased tissue, and report their success.

"The key to this breakthrough has been the five-year EPSRC Leadership Fellowship awarded to me back in 2009", Professor Alexander comments. "This has provided the stability of funding to recruit and retain an outstanding team, who have been integral to realising the ideas put forward in the Fellowship. It has also given us the freedom to explore a whole range of new concepts, as well as the time needed to test our ideas to bring this and other breakthroughs within reach".

The team's new results have been published in Nanoscale.

.


Related Links
Engineering and Physical Sciences Research Council
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
No nano-dust danger from facade paint
Zurich, Switzerland (SPX) Jan 17, 2014
After 42 months the EU research project "NanoHouse" has ended, and the verdict is a cautious "all clear" - nanoparticles in the paint used on building facades do not represent a particular health risk. In the course of a "Technology Briefing" Empa researchers discussed these results with specialists from the construction industry. Five Empa laboratories were involved in the EU "NanoHouse" ... read more


NANO TECH
NASA Seeks Partnership Opportunities For Commercial Lunar Landers

Chang'e-3 probe sets out on new missions

China's lunar probe observes stars, explores moon

China's moon rover performs first lunar probe

NANO TECH
Mystery Mars rock reveals unexpected chemical composition

Mysterious stone 'rawled up' to Mars Rover Opportunity

Oppy Encounters A Surprise At Solander Point

Dutch researcher says Earth food plants able to grow on Mars

NANO TECH
At Your Service: Orion Service Module Complete

Lawrence Livermore 'space cops' to help control traffic in space

NASA's Dryden Flight Research Center to be Renamed for Neil Armstrong

NASA Tests Orion Spacecraft Parachute Jettison over Arizona

NANO TECH
Extra Time for Tiangong

Official: China's space policy open to world

China launches communications satellite for Bolivia

China's moon rover continues lunar survey after photographing lander

NANO TECH
Cygnus Work Under Way, Normal Station Operations Continue

Spaceflight, Nanoracks Partnership Launch CubeSat Customers Towards Historic ISS Deployment

Orbital's cargo ship arrives at space station

Obama Administration Extends ISS Until at Least 2024

NANO TECH
Turkish Telecoms Satellite to Launch From Baikonur Feb. 15

Russia's Soyuz Rocket to Get Video Cameras

NASA Commercial Crew Partner SpaceX Tests Dragon Parachute System

NASA's Commercial Crew Partners Aim to Capitalize, Expand on 2013 Successes in 2014

NANO TECH
ALMA Discovers a Formation Site of a Giant Planetary System

Herschel Telescope Detects Water on Dwarf Planet

Bright star reveals new exoplanet

'Dwarf planet' in deep space has water

NANO TECH
Smooth sailing: Rough surfaces that can reduce drag

CCNY Team Models Sudden Thickening of Complex Fluids

CCNY Team Models Sudden Thickening of Complex Fluids

ESA to develop satellite reentry technology




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement