Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




TECH SPACE
Molecular machine could hold key to more efficient manufacturing
by Staff Writers
Manchester UK (SPX) Jan 14, 2013


Professor Leigh's molecular machine is based on the ribosome. It features a functionalized nanometre-sized ring that moves along a molecular track, picking up building blocks located on the path and connecting them together in a specific order to synthesize the desired new molecule. First the ring is threaded onto a molecular strand using copper ions to direct the assembly process. Then a "reactive arm" is attached to the rest of the machine and it starts to operate. The ring moves up and down the strand until its path is blocked by a bulky group. The reactive arm then detaches the obstruction from the track and passes it to another site on the machine, regenerating the active site on the arm. The ring is then free to move further along the strand until its path is obstructed by the next building block. This, in turn, is removed and passed to the elongation site on the ring, thus building up a new molecular structure on the ring. Once all the building blocks are removed from the track, the ring de-threads and the synthesis is over. Credit: Miriam Wilson. Please click here to watch the video.

An industrial revolution on a minute scale is taking place in laboratories at The University of Manchester with the development of a highly complex machine that mimics how molecules are made in nature.

The artificial molecular machine developed by Professor David Leigh FRS and his team in the School of Chemistry is the most advanced molecular machine of its type in the world. Its development has been published in the journal Science.

Professor Leigh explains: "The development of this machine which uses molecules to make molecules in a synthetic process is similar to the robotic assembly line in car plants.

"Such machines could ultimately lead to the process of making molecules becoming much more efficient and cost effective. This will benefit all sorts of manufacturing areas as many manmade products begin at a molecular level. For example, we're currently modifying our machine to make drugs such as penicillin."

The machine is just a few nanometres long (a few millionths of a millimetre) and can only be seen using special instruments. Its creation was inspired by natural complex molecular factories where information from DNA is used to programme the linking of molecular building blocks in the correct order.

The most extraordinary of these factories is the ribosome, a massive molecular machine found in all living cells.

Professor Leigh's machine is based on the ribosome. It features a functionalized nanometre-sized ring that moves along a molecular track, picking up building blocks located on the path and connecting them together in a specific order to synthesize the desired new molecule.

First the ring is threaded onto a molecular strand using copper ions to direct the assembly process. Then a "reactive arm" is attached to the rest of the machine and it starts to operate.

The ring moves up and down the strand until its path is blocked by a bulky group. The reactive arm then detaches the obstruction from the track and passes it to another site on the machine, regenerating the active site on the arm. The ring is then free to move further along the strand until its path is obstructed by the next building block.

This, in turn, is removed and passed to the elongation site on the ring, thus building up a new molecular structure on the ring. Once all the building blocks are removed from the track, the ring de-threads and the synthesis is over.

Professor Leigh says the current prototype is still far from being as efficient as the ribosome: "The ribosome can put together 20 building blocks a second until up to 150 are linked.

"So far we have only used our machine to link together 4 blocks and it takes 12 hours to connect each block. But you can massively parallel the assembly process: We are already using a million million million (1018) of these machines working in parallel in the laboratory to build molecules."

Professor Leigh continues: "The next step is to start using the machine to make sophisticated molecules with more building blocks. The potential is for it to be able to make molecules that have never been seen before.

"They're not made in nature and can't be made synthetically because of the processes currently used. This is a very exciting possibility for the future."

.


Related Links
University of Manchester
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Chemical modules that mimic predator-prey and other behaviors
Washington DC (SPX) Jan 11, 2013
Scientists are reporting development of chemical modules that can reproduce, on an "unprecedented" molecular level, changes and interactions that occur in natural populations of plants and animals, including those of hunting and being hunted for food, conducting mutually beneficial relationships and competing for resources. The report on these new "predator-prey biochemical oscillators," w ... read more


TECH SPACE
Mission would drag asteroid to the moon

Russia designs manned lunar spacecraft

GRAIL Lunar Impact Site Named for Astronaut Sally Ride

NASA probes crash into the moon

TECH SPACE
Mars One announces requirements for Red Planet colonists

Opportunity Heading Toward Light-Toned Veins

Bacteria In Rio Tinto Could Be Like Those On Mars

Mars500 project - salt balance of the Mars 'astronauts'

TECH SPACE
Unilever Buys 22 Flights On XCOR Lynx Suborbiter For AXE Campaign

Iran renews plan to send monkey into space: reports

AXE to Send 22 Guys to Space with New Apollo Campaign

IBM tops as tech titans scramble for US patents

TECH SPACE
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

TECH SPACE
Crew Wraps Up Robonaut Testing

Station Crew Ringing in New Year

Expedition 34 Ready to Ring in New Year

New ISS crew docked at Space Station

TECH SPACE
Roscosmos Releases Report On Proton Launch Anomaly

Russia plans replacement for Soyuz rocket

Arianespace's industry leadership will continue with 12 launcher family missions planned in 2013

Arianespace addresses The Insurance Institute of London

TECH SPACE
Earth-size planets common in galaxy

NASA's Hubble Reveals Rogue Planetary Orbit For Fomalhaut B

NASA, ESA Telescopes Find Evidence for Asteroid Belt Around Vega

Kepler Gets a Little Help From Its Friends

TECH SPACE
Molecular machine could hold key to more efficient manufacturing

Study reveals ordinary glass's extraordinary properties

Bottom-up approach provides first characterization of pyroelectric nanomaterials

Chemical modules that mimic predator-prey and other behaviors




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement