Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Molecular Traffic Jam Makes Water Move Faster through Nanochannels
by Staff Writers
Chicago IL (SPX) Feb 11, 2014


Illustration only.

Cars inch forward slowly in traffic jams, but molecules, when jammed up, can move extremely fast. New research by Northwestern University researchers finds that water molecules traveling through tiny carbon nanotube pipes do not flow continuously but rather intermittently, like stop-and-go traffic, with unexpected results.

"Previous molecular dynamics simulations suggested that water molecules coursing through carbon nanotubes are evenly spaced and move in lockstep with one another," said Seth Lichter, professor of mechanical engineering at Northwestern's McCormick School of Engineering and Applied Science.

"But our model shows that they actually move intermittently, enabling surprisingly high flow rates of 10 billion molecules per second or more."

The research is described in an Editor's Choice paper, "Solitons Transport Water through Narrow Carbon Nanotubes," published January 27 in the journal Physical Review Letters.

The findings could resolve a quandary that has baffled fluid dynamics experts for years. In 2005, researchers - working under the assumption that water molecules move through channels in a constant stream - made a surprising discovery: water in carbon nanotubes traveled 10,000 times faster than predicted.

The phenomenon was attributed to a supposed smoothness of the carbon nanotubes' surface, but further investigation uncovered the counterintuitive role of their inherently rough interior.

Lichter and post-doctoral researcher Thomas Sisan performed new simulations with greater time resolution, revealing localized variations in the distribution of water along the nanotube. The variations occur where the water molecules do not line up perfectly with the spacing between carbon atoms - creating regions in which the water molecules are unstable and so propagate exceedingly easily and rapidly through the nanotube.

Nanochannels are found in all of our cells, where they regulate fluid flow across cell membranes. They also have promising industrial applications for desalinating water. Using the newly discovered fluid dynamics principles could enable other applications such as chemical separations, carbon nanotube-powered batteries, and the fabrication of quantum dots, nanocrystals with potential applications in electronics.

.


Related Links
Northwestern's McCormick School of Engineering and Applied Science
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Physicists at Mainz University build pilot prototype of a single ion heat engine
Mainz, Germany (SPX) Feb 12, 2014
Scientists at Johannes Gutenberg University Mainz (JGU) and the University of Erlangen-Nuremberg are working on a heat engine that consists of just a single ion. Such a nano-heat engine could be far more efficient than, for example, a car engine or a coal-fired power plant. A usual heat engine transforms heat into utilizable mechanical energy with the corresponding efficiency of an Otto en ... read more


NANO TECH
Source of 'Moon Curse' Revealed by Eclipse

NASA bets on private companies to exploit moon's resources

Astrobotic Begins Testing at Masten Space Systems

NASA Extends Moon Exploring Satellite Mission

NANO TECH
NASA solves mystery of Mars 'doughnut' rock

'Pinnacle Island' Rock Studies Continue

Calculated Risks: How Radiation Rules Mars Exploration

ASU Mars camera to get new views of Red Planet

NANO TECH
Hollande on Silicon Valley charm offensive

ORBITEC Supports NASA Kennedys Advanced Plant Habitat for ISS

Tech products can turn uncool when they become too popular

Is it time to lift alcohol ban in space?

NANO TECH
China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

Moon plays trick on Jade Rabbit

Waiting for Yutu

NANO TECH
Andrews Space Cargo Module Power Unit Provides Power For Payloads Bound For ISS

Russian Progress M-22M docks with ISS following fast rendezvous

Russian Resupply Spacecraft Begins Expedited Flight to Station

NASA Selects Physical Science Research Proposals for the ISS

NANO TECH
Airbus Defence and Space wins new ESA contract for Ariane 6

Turkey launches satellite to increase Internet speed

Russia-Kazakhstan Working Group to Report on Proton Launches

Russian Telecoms Satellites Readied for March Launch

NANO TECH
Kepler Finds a Very Wobbly Planet

One planet, two stars: new research shows how circumbinary planets form

First Weather Map of Brown Dwarf

NASA-Sponsored 'Disk Detective' Lets Public Search for New Planetary Nurseries

NANO TECH
Space junk endangers mankind's usual course of life

Scientists use 'voting' and 'penalties' to overcome quantum errors

Theorists predict new forms of exotic insulating materials

From Stone Age to Space Age: bone pigment helps probe




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement