Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Measuring Transient X-rays with Lobster Eyes
by Lori Keesey for Goddard Space Flight Center

Greenbelt, MD (SPX) May 23, 2012


Goddard scientists (clockwise) Scott Barthelmy, Gerry Skinner, and Jordan Camp are show here with their prototype "Lobster Transient X-ray Detector," a cross-cutting instrument that would detect transient X-rays and ammonia leaks on the International Space Station. Credit: NASA/Debora McCallum.

A technology that mimics the structure of a lobster's eyes is now being applied to a new instrument that could help revolutionize X-ray astronomy and keep astronauts safe on the International Space Station. Scientists at NASA's Goddard Space Flight Center in Greenbelt, Md., are developing the "Lobster Transient X-ray Detector," which they hope to deploy on the space station in three to four years.

From its perch on the orbiting outpost, the cross-cutting instrument now being developed by Jordan Camp, Scott Barthelmy, and Gerry Skinner would detect with unprecedented accuracy transient X-rays - those fleeting, hard-to-capture high-energy photons produced during black-hole and neutron-star mergers, supernovae, and gamma-ray bursts created much farther away in the early universe.

But the lobster-eye technology also could carry out another much-needed job.

It could check for ammonia leaks on the International Space Station - a problem that engineers at NASA's Johnson Space Center in Houston, Texas, have identified as needing a solution. Anhydrous ammonia, a toxic compound of nitrogen and hydrogen, is used as a coolant that helps regulate the station's onboard temperatures. Currently, leaks are at acceptable levels, but a sudden increase could pose serious risks to astronauts, Camp said.

New Application for Established Technology
Lobster technology isn't new. First conceived as an X-ray all-sky monitor by University of Arizona scientist Roger Angel in the 1970s, it mimics the structure of the crustacean's eyes, which are made up of long, narrow cells that each captures a tiny amount of light, but from many different angles. Only then is the light focused into a single image.

The lobster X-ray instrument's optics would work the same way. Its eyes are a microchannel plate, a thin, curved slab of material dotted with tiny tubes across the surface.

X-ray light enters these tubes from multiple angles and is focused through grazing-incident reflection, giving the technology a wide field of view necessary for finding and then imaging transient events that cannot be predicted in advance. The lobster detector is unique in that it is highly sensitive and provides a wide field of view and high-angular resolution, Camp said.

Since Angel first conceived the concept, astronomers at the University of Leicester in Leicester, England, have matured the technology and have built an instrument to fly on BepiColombo, a mission to Mercury developed jointly by the European Space Agency (ESA) and the Japan Aerospace Exploration Agency. ESA plans to launch the spacecraft in 2014.

What's new is "what we want to do with it," Camp said. "The innovation is using the lobster technology for a cross-cutting application. We want to use the technology in a new way to promote both astrophysics and human spaceflight."

To advance the dual-use concept, the team is using Goddard Internal Research and Development and NASA Office of the Chief Technologist's Center Innovation Fund support to assemble and test a prototype equipped with a commercially available microchannel plate, a charged-coupled device detector, and associated electronics.

Wide Field Collection of Transient X-rays
With its increased sensitivity and wide field of view, Camp said the instrument would be able to detect transient X-ray emissions from a large portion of the sky, giving scientists an unprecedented view of black-hole mergers, supernovae, and even gamma-ray bursts in the very distant universe. Transient X-rays are now difficult to detect because these sources brighten without warning and then vanish just as quickly.

He also believes the instrument could work in conjunction with and even extend the sensitivity of the Laser Interferometer Gravitational-Wave Observatory (LIGO), a National Science Foundation-funded experiment that has searched for gravitational waves since 2002. Gravitational waves, first postulated by Albert Einstein, are faint ripples in space-time that theoretically happen during massively powerful events, such as black-hole or neutron-star binary mergers.

Gravitational-wave detectors don't localize well. Used in conjunction with the focusing Lobster detector, however, scientists would be able to zero in on the location of the source, Camp said.

Detection of Ammonia Leaks on Space Station
Just as exciting, Camp said, is how he could use the technology to detect ammonia leaks. Anhydrous ammonia runs through tubing connected to huge radiator panels located outside the space station. As the ammonia circulates through the tubing, it releases heat as infrared radiation. In short, it helps to regulate onboard temperatures. Possibly because of micrometeorite impacts or thermal-mechanical stresses, these lines currently leak.

The lobster technology could help, Camp said. With this application, however, the instrument would require the addition of a specialized device called an electron gun, which would bombard surfaces with electron beams at specific energy levels. Elements that come into contact with these electron beams are excited, producing X-rays at specific energy levels.

In this case, the instrument, once attached to the space station's robotic arm, would sweep over the coolant lines and radiator panels in search of nitrogen, and more specifically the X-rays generated by the element. If nitrogen X-rays are detected, their presence could indicate leaks since ammonia is a compound of nitrogen and hydrogen.

Skinner has taken the lead in assembling and testing a leak-checking detector prototype and has recently succeeded in producing an X-ray image of a small nitrogen leak in a laboratory vacuum system. Barthelmy, meanwhile, is studying the system issues involved in deploying a dual-use lobster system on the space station.

"Many people are excited about the possibilities of this quintessentially cross-cutting instrument," Camp said. "With help from our IRAD program, we plan to advance the technology-readiness levels of our proposed instrument. We'll see where it goes. We believe it has great potential."

.


Related Links
Technology news at Goddard Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Loral-Built Nimiq 6 Satellite ly Performs Post-Launch Maneuvers
Palo Alto, CA (SPX) May 20, 2012
Space Systems/Loral reports that the Nimiq 6 satellite, designed and built for Telesat, one of the world's leading satellite operators, is successfully performing post-launch maneuvers according to plan. The satellite was successfully launched yesterday from the Baikonur Space Center in Kazakhstan aboard a Proton Breeze M launch vehicle provided by International Launch Services (ILS). The ... read more


TECH SPACE
Perigee "Super Moon" On May 5-6

India's second moon mission Chandrayaan-2 to wait

European Google Lunar X Prize Teams Call For Science Payloads

Russia to Send Manned Mission to Moon by 2030

TECH SPACE
NASA Goddard Delivers Magnetometers for NASA's Next Mission to Mars

To the Highlands of Mars

Opportunity Rolling Again After Fifth Mars Winter

Mojave Desert Tests Prepare for NASA Mars Roving

TECH SPACE
Glitch mars opening of world's tallest tower

SpaceX Falcon 9 Dragon Launch Aborted

NASA chooses rocket for Orion launches

World expert outlines the future for air space travel

TECH SPACE
When Will Shenzhou 9 Be Launched

China's space women wait for blast-off

Shenzhou 9 to be ready for mid-June launch?

China confirms plans to build own orbital station

TECH SPACE
Space Station - Here We Come!

ISS Research and Development Conference June 26-28 Denver

ISS Cosmonauts to Make 3D Photo Report

Russia delivers three astronauts to ISS: official

TECH SPACE
SpaceX blasts off to space station in historic first

What Went Up Can Now Come Down With SpaceX Demo Flight

SpaceX capsule completes first tests before ISS docking

SpaceX readies new attempt of rocket launch to space lab

TECH SPACE
Newfound exoplanet may turn to dust

Cosmic dust rings no guarantee of planets

In search of new 'Earths' beyond our Solar System

Free-floating planets in the Milky Way outnumber stars by factors of thousands

TECH SPACE
Measuring Transient X-rays with Lobster Eyes

Reversible doping: Hydrogen flips switch on vanadium oxide

From Lemons to Lemonade: Reaction Uses CO2 to Make Carbon-Based Semiconductor

Using Graphene, Scientists Develop a Less Toxic Way to Rust-Proof Steel




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement