Subscribe free to our newsletters via your
. 24/7 Space News .




CLONE AGE
Making it easier to make stem cells
by Staff Writers
La Jolla, CA (SPX) Sep 27, 2012


Induced pluripotent stem cells generated using a kinase inhibitor. Credit: Sanford-Burnham Medical Research Institute.

The process researchers use to generate induced pluripotent stem cells (iPSCs)-a special type of stem cell that can be made in the lab from any type of adult cell-is time consuming and inefficient. To speed things up, researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) turned to kinase inhibitors.

These chemical compounds block the activity of kinases, enzymes responsible for many aspects of cellular communication, survival, and growth.

As they outline in a paper published September 25 in Nature Communications, the team found several kinase inhibitors that, when added to starter cells, help generate many more iPSCs than the standard method.

This new capability will likely speed up research in many fields, better enabling scientists around the world to study human disease and develop new treatments.

"Generating iPSCs depends on the regulation of communication networks within cells," explained Tariq Rana, Ph.D., program director in Sanford-Burnham's Sanford Children's Health Research Center and senior author of the study.

"So, when you start manipulating which genes are turned on or off in cells to create pluripotent stem cells, you are probably activating a large number of kinases. Since many of these active kinases are likely inhibiting the conversion to iPSCs, it made sense to us that adding inhibitors might lower the barrier."

According to Tony Hunter, Ph.D., professor in the Molecular and Cell Biology Laboratory at the Salk Institute for Biological Studies and director of the Salk Institute Cancer Center, "The identification of small molecules that improve the efficiency of generating iPSCs is an important step forward in being able to use these cells therapeutically.

"Tariq Rana's exciting new work has uncovered a class of protein kinase inhibitors that override the normal barriers to efficient iPSC formation, and these inhibitors should prove useful in generating iPSCs from new sources for experimental and ultimately therapeutic purposes." Hunter, a kinase expert, was not involved in this study.

The promise of iPSCs
At the moment, the only treatment option available to many heart failure patients is a heart transplant. Looking for a better alternative, many researchers are coaxing stem cells into new heart muscle.

In Alzheimer's disease, researchers are also interested in stem cells, using them to reproduce a person's own malfunctioning brain cells in a dish, where they can be used to test therapeutic drugs.

But where do these stem cells come from? Since the advent of iPSC technology, the answer in many cases is the lab. Like their embryonic cousins, iPSCs can be used to generate just about any cell type-heart, brain, or muscle, to name a few-that can be used to test new therapies or potentially to replace diseased or damaged tissue.

It sounds simple enough: you start with any type of differentiated cell, such as skin cells, add four molecules that reprogram the cells' genomes, and then try to catch those that successfully revert to unspecialized iPSCs. But the process takes a long time and isn't very efficient-you can start with thousands of skin cells and end up with just a few iPSCs.

Inhibiting kinases to make more iPSCs
Zhonghan Li, a graduate student in Rana's laboratory, took on the task of finding kinase inhibitors that might speed up the iPSC-generating process. Scientists in the Conrad Prebys Center for Chemical Genomics, Sanford-Burnham's drug discovery facility, provided Li with a collection of more than 240 chemical compounds that inhibit kinases.

Li painstakingly added them one-by-one to his cells and waited to see what happened. Several kinase inhibitors produced many more iPSCs than the untreated cells-in some cases too many iPSCs for the tiny dish housing them. The most potent inhibitors targeted three kinases in particular: AurkA, P38, and IP3K.

Working with the staff in Sanford-Burnham's genomics, bioinformatics, animal modeling, and histology core facilities-valuable resources and expertise available to all Sanford-Burnham scientists and the scientific community at large-Rana and Li further confirmed the specificity of their findings and even nailed down the mechanism behind one inhibitor's beneficial actions.

"We found that manipulating the activity of these kinases can substantially increase cellular reprogramming efficiency," Rana said.

"But what's more, we've also provided new insights into the molecular mechanism of reprogramming and revealed new functions for these kinases. We hope these findings will encourage further efforts to screen for small molecules that might prove useful in iPSC-based therapies."

.


Related Links
Sanford-Burnham Medical Research Institute
The Clone Age - Cloning, Stem Cells, Space Medicine






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLONE AGE
Beacons light up stem cell transformation
Providence RI (SPX) Sep 14, 2012
A novel set of custom-designed "molecular beacons" allows scientists to monitor gene expression in living populations of stem cells as they turn into a specific tissue in real-time. The technology, which Brown University researchers describe in a new study, provides tissue engineers with a potentially powerful tool to discover what it may take to make stem cells transform into desired tissue cel ... read more


CLONE AGE
China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

NASA sees 'gateway' for space missions

Protection for Moon, Mars astronauts eyed

CLONE AGE
A windshield wiper for Mars dust

Curiosity Finishes Close Inspection of Rock Target

Where is Deimos?

Professor says NASA's Martian weather reports show extreme pressure swings

CLONE AGE
B612 Wins Funding Support From Prominent Business Leadersy

Cavenauts return to Earth

Brazil unveils tax incentives to boost tech innovation

New Technology Being Stymied by Copyright Law

CLONE AGE
China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

CLONE AGE
Russia to send all-novice crew to ISS

ATV undocking postponed

Crew Members Prepare for Departure

ISS Crew Lands Safely in Kazakhstan

CLONE AGE
California Governor Signs the Spaceflight Liability and Immunity Act

Processing is underway with the next Automated Transfer Vehicle to be orbited by Arianespace

Fueling underway with the Galileo satellites for next Soyuz launch from French Guiana

SpaceX, NASA Target Oct. 7 Launch For Resupply Mission To Space Station

CLONE AGE
Meteors Might Add Methane to Exoplanet Atmospheres

Two 'hot Jupiters' found in star cluster: NASA

Planets Can Form in the Galactic Center

Birth of a planet

CLONE AGE
Pigs' revenge as 'Angry Birds' makers launch new game

Basing of first US Space Fence facility announced

US Bank admits 'attacks,' says customer data safe

Date palm juice: A potential new 'green' anti-corrosion agent for aerospace industry




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement