Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Magnetic fields slow down stars
by Staff Writers
Potsdam, Germany (SPX) Jun 15, 2012


Numerical Simulations show a strong disturbation of the magnetic fields inside a star for higher than critical magnetic field values (Credits:AIP).

Scientists have proved the existence of a magnetic effect that could explain why solar-like stars spin very slowly at the end of their lifetime. Researchers from the Leibniz-Institut fur Astrophysik Potsdam (AIP) made simulations of the magnetic fields of stars and compared the results with measurements from a laboratory experiment done at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

The aim and result of this experiment was to detect, for the first time, a magnetic instability that had been theoretically predicted but never directly observed in a star.

This magnetic effect would enhance the viscosity of hot plasma inside a star, leading to a strong deceleration of its core.

"We have known for years that the Tayler instability is an effective mechanism to explain the deceleration of stars, but until now there was no proof of its existence," says Gunther Rudiger, the principal investigator at AIP.

"This experiment confirms our numerical predictions very well!" adds Marcus Gellert, who conducted computer simulations to prepare the experiment.

In order to correlate with the low rotation rates observed in white dwarfs, or neutron stars, which are stars at the end of their life cycle, the core rotation rate of a solar-like star would have to drop by ninety percent.

A permanently active magnetic instability could decelerate the core of a star very effectively and would explain observations in a simple and elegant way.

The extent to which these laboratory results can be transferred to a real star has to be shown via new simulations and comparisons with observations in the near future.

The confirmation of the Tayler instability underlines the importance of magnetic fields in stars and could be an important step towards creating more consistent models of stellar evolution.

The GATE experiment is a successor to the award-winning "PROMISE" experiment which, in 2010, proved the existence of so-called magnetorotational instability (MRI), demonstrating a second successful partnership between astronomers from AIP and scientists at HZDR in shedding more light on stars in the lab.

Rudiger G., Gellert M., Schultz M., Strassmeier K.G., Stefani F., Gundrum Th., Seilmayer M., Gerbeth G.: Critical fields and growth rates of the Tayler instability as probed by a columnar gallium experiment (eingereicht bei ApJ, preprint); Martin Seilmayer, Frank Stefani u.a.: Evidence for transient Tayler instability in a liquid metal experiment, in: Physical Review Letters.

.


Related Links
GATE: Experiment and Theory for probing the magnetic "Tayler Instability"
Astrophysik Potsdam (AIP)
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
WISE Finds Few Brown Dwarfs Close to Home
Pasadena CA (JPL) Jun 15, 2012
Astronomers are getting to know the neighbors better. Our sun resides within a spiral arm of our Milky Way galaxy about two-thirds of the way out from the center. It lives in a fairly calm, suburb-like area with an average number of stellar residents. Recently, NASA's Wide-field Infrared Survey Explorer, or WISE, has been turning up a new crowd of stars close to home: the coldest of the brown dw ... read more


STELLAR CHEMISTRY
Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

UA Lunar-Mining Team Wins National Contest

NASA Lunar Spacecraft Complete Prime Mission Ahead of Schedule

NASA Offers Guidelines To Protect Historic Sites On The Moon

STELLAR CHEMISTRY
Opportunity Faces Slow Going Due To Communication Issues

Test of Spare Wheel Puts Odyssey on Path to Recovery

Impact atlas catalogs over 635,000 Martian craters

e2v imaging sensors launched into space on NASA mission to Mars

STELLAR CHEMISTRY
Data From Voyager 1 Points To Interstellar Future

The pressure is on for aquanauts

Virgin Galactic Opens New Office

US scientists host 'bake sale for NASA'

STELLAR CHEMISTRY
Time Shifts for Tiangong

China to send its first woman into space on Saturday

China sends its first woman astronaut into space

Major Liu Yang - a Chinese heroine in waiting?

STELLAR CHEMISTRY
Varied Views from the ISS

Strange Geometry - Yes, It's All About the Math

Capillarity in Space - Then and Now, 1962-2012

Dragon on board

STELLAR CHEMISTRY
NASA Administrator Bolden Views Historic SpaceX Dragon Capsule

NASA's NuSTAR Mission Lifts Off

Orbital Launches Company-Built NuSTAR Satellite Aboard Pegasus Rocket for NASA

NuSTAR Arrives at Island Launch Site

STELLAR CHEMISTRY
Extremely little telescope discovers pair of odd planets

Alien Earths Could Form Earlier than Expected

Planets can form around different types of stars

Small Planets Don't Need 'Heavy Metal' Stars to Form

STELLAR CHEMISTRY
Microsoft might talk tablets and TV on Monday

Energy Efficient Dynamic Glass That "Switches On Demand"

Japanese restrict atomic exposure testing

Microsoft reaches into TV market with Xbox Live ads




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement