Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Magnetic Fields Set the Stage for Star Birth
by Staff Writers
Heidelberg, Germany (SPX) Nov 17, 2011


Image of the Triangulum Galaxy M33, which presents astronomers with a bird's eye view of its disk. The pink blobs are regions containing newly formed stars. Credit: Thomas V. Davis.

Stars and their planets are born when giant clouds of interstellar gas and dust collapse. You've probably seen the resulting stellar nurseries in beautiful astronomical images: Colorful nebulae, lit by the bright young stars they have brought forth.

Astronomers know quite a bit about these so-called molecular clouds: They consist mainly of hydrogen molecules - unusual in a cosmos where conditions are rarely right for hydrogen atoms to bond together into molecules.

And if one traces the distribution of clouds in a spiral galaxy like our own Milky Way galaxy, one finds that they are lined up along the spiral arms.

But how do those clouds come into being? What makes matter congregate in regions a hundred or even a thousand times more dense than the surrounding interstellar gas?

One candidate mechanism involves the galaxy's magnetic fields. Everyone who has seen a magnet act on iron filings in the classic classroom experiment knows that magnetic fields can be used to impose order.

Some researchers have argued that something similar goes on in the case of molecular clouds: that galaxies' magnetic fields guide and direct the condensation of interstellar matter to form denser clouds and facilitate their further collapse.

Some astronomers see this as the key mechanism enabling star formation. Others contend that the cloud matter's gravitational attraction and turbulent motion of gas within the cloud are so strong as to cancel any influence of an outside magnetic field.

If we were to restrict attention to our own galaxy, it would be difficult to find out who is right. We would need to see our galaxy's disk from above to make the appropriate measurements; in reality, our Solar System sits within the galactic disk.

That is why Hua-bai Li and Thomas Henning from the Max Planck Institute for Astronomy chose a different target: the Triangulum galaxy, 3 million light-years from Earth and also known as M33, which is oriented in just the right way.

Using a telescope known as the Submillimeter Array (SMA), which is located at Mauna Kea Observatory on Mauna Kea Island, Hawai'i, Li and Henning measured specific properties of radiation received from different regions of the galaxy which are correlated with the orientation of these regions' magnetic fields.

They found that the magnetic fields associated with the galaxy's six most massive giant molecular clouds were orderly, and well aligned with the galaxy's spiral arms.

If turbulence played a more important role in these clouds than the ordering influence of the galaxy's magnetic field, the magnetic field associated with the clouds would be random and disordered.

Thus, Li and Henning's observations are a strong indication that magnetic fields indeed play an important role when it comes to the formation of dense molecular clouds - and to setting the stage for the birth of stars and planetary systems like our own.

The work described here will be published in the November 24, 2011, edition of Nature as H. Li and T. Henning, "The alignment of molecular cloud magnetic fields with the spiral arms in M33". The article will be published online on November 16.

.


Related Links
MPIA
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
APEX gives us a new view of star formation in the Carina Nebula
Munich, Germany (ESO) Nov 17, 2011
Using the LABOCA camera on the Atacama Pathfinder Experiment (APEX) telescope on the plateau of Chajnantor in the Chilean Andes, a team of astronomers led by Thomas Preibisch (Universitats-Sternwarte Munchen, Ludwig-Maximilians-Universitat, Germany), in close cooperation with Karl Menten and Frederic Schuller (Max-Planck-Institut fur Radioastronomie, Bonn, Germany), imaged the region in submilli ... read more


STELLAR CHEMISTRY
LRO Camera Team Releases High Resolution Global Topographic Map of Moon

Mystery of the Lunar Ionosphere

Ancient Lunar Dynamo May Explain Magnetized Moon Rocks

Ancient Lunar Dynamo May Explain Magnetized Moon Rocks

STELLAR CHEMISTRY
'Frustration' in Europe over joint Mars probe: NASA

NASA readies launch of 'dream machine' to Mars

Contact with Russian Mars probe 'unlikely' - expert

Mars explorers will include women, experts say

STELLAR CHEMISTRY
Weightless US teachers eye giant science leap

Allianz and International Space Transport Association partner in space tourism industry

US honors astronauts for pioneering space flights

Raytheon and Petrofac Partner to Provide Water Survival Training at NASA

STELLAR CHEMISTRY
China launches two satellites: state media

Shenzhou-8 departs from in-orbit lab, ready for return

China's spacecraft comes back to Earth

Shenzhou for Dummies

STELLAR CHEMISTRY
New Trio Welcomed Aboard Station, Gets to Work

Maintaining Crew Health One Step at a Time

Russian spacecraft delivers new crew to ISS

Soyuz Docks At ISS, Hatch Opened

STELLAR CHEMISTRY
Mobile Launcher Moves to Launch Pad

Rocket engineer Wolfgang Jung a logistics expert for space science

Arianespace to launch satellite for DIRECTV Latin America

Delta Mariner offloads launch components at Vandenberg

STELLAR CHEMISTRY
Exo planet count tops 700

Giant planet ejected from the solar system

Three New Planets and a Mystery Object Discovered Outside Our Solar System

Dwarf planet sized up accurately as it blocks light of faint star

STELLAR CHEMISTRY
New 'smart' material could help tap medical potential of tissue-penetrating light

Orbital-Built Intelsat 18 Communications Satellite Completes In-Orbit Testing

Amazon sells Kindle Fire below cost: research firm

World's lightest material invented




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement