Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




STELLAR CHEMISTRY
Magnetar Formation Mystery Solved
by Staff Writers
Munich, Germany (SPX) May 19, 2014


This artist's impression shows the magnetar in the very rich and young star cluster Westerlund 1. This remarkable cluster contains hundreds of very massive stars, some shining with a brilliance of almost one million suns. European astronomers have for the first time demonstrated that this magnetar - an unusual type of neutron star with an extremely strong magnetic field - probably was formed as part of a binary star system. The discovery of the magnetar's former companion elsewhere in the cluster helps solve the mystery of how a star that started off so massive could become a magnetar, rather than collapse into a black hole. Image courtesy ESO/L. Calcada.

Magnetars are the bizarre super-dense remnants of supernova explosions. They are the strongest magnets known in the Universe - millions of times more powerful than the strongest magnets on Earth. A team of European astronomers using ESO's Very Large Telescope (VLT) now believe they've found the partner star of a magnetar for the first time.

This discovery helps to explain how magnetars form - a conundrum dating back 35 years - and why this particular star didn't collapse into a black hole as astronomers would expect.

When a massive star collapses under its own gravity during a supernova explosion it forms either a neutron star or black hole. Magnetars are an unusual and very exotic form of neutron star. Like all of these strange objects they are tiny and extraordinarily dense - a teaspoon of neutron star material would have a mass of about a billion tonnes - but they also have extremely powerful magnetic fields.

Magnetar surfaces release vast quantities of gamma rays when they undergo a sudden adjustment known as a starquake as a result of the huge stresses in their crusts.

The Westerlund 1 star cluster [1], located 16 000 light-years away in the southern constellation of Ara (the Altar), hosts one of the two dozen magnetars known in the Milky Way. It is called CXOU J164710.2-455216 and it has greatly puzzled astronomers.

"In our earlier work (eso1034) we showed that the magnetar in the cluster Westerlund 1 (eso0510) must have been born in the explosive death of a star about 40 times as massive as the Sun. But this presents its own problem, since stars this massive are expected to collapse to form black holes after their deaths, not neutron stars. We did not understand how it could have become a magnetar," says Simon Clark, lead author of the paper reporting these results.

Astronomers proposed a solution to this mystery. They suggested that the magnetar formed through the interactions of two very massive stars orbiting one another in a binary system so compact that it would fit within the orbit of the Earth around the Sun. But, up to now, no companion star was detected at the location of the magnetar in Westerlund 1, so astronomers used the VLT to search for it in other parts of the cluster.

They hunted for runaway stars - objects escaping the cluster at high velocities - that might have been kicked out of orbit by the supernova explosion that formed the magnetar. One star, known as Westerlund 1-5 [2], was found to be doing just that.

"Not only does this star have the high velocity expected if it is recoiling from a supernova explosion, but the combination of its low mass, high luminosity and carbon-rich composition appear impossible to replicate in a single star - a smoking gun that shows it must have originally formed with a binary companion," adds Ben Ritchie (Open University), a co-author on the new paper.

This discovery allowed the astronomers to reconstruct the stellar life story that permitted the magnetar to form, in place of the expected black hole [3]. In the first stage of this process, the more massive star of the pair begins to run out of fuel, transferring its outer layers to its less massive companion - which is destined to become the magnetar - causing it to rotate more and more quickly. This rapid rotation appears to be the essential ingredient in the formation of the magnetar's ultra-strong magnetic field.

In the second stage, as a result of this mass transfer, the companion itself becomes so massive that it in turn sheds a large amount of its recently gained mass. Much of this mass is lost but some is passed back to the original star that we still see shining today as Westerlund 1-5.

"It is this process of swapping material that has imparted the unique chemical signature to Westerlund 1-5 and allowed the mass of its companion to shrink to low enough levels that a magnetar was born instead of a black hole - a game of stellar pass-the-parcel with cosmic consequences!" concludes team member Francisco Najarro (Centro de Astrobiologia, Spain).

It seems that being a component of a double star may therefore be an essential ingredient in the recipe for forming a magnetar. The rapid rotation created by mass transfer between the two stars appears necessary to generate the ultra-strong magnetic field and then a second mass transfer phase allows the magnetar-to-be to slim down sufficiently so that it does not collapse into a black hole at the moment of its death.

Notes
[1] The open cluster Westerlund 1 was discovered in 1961 from Australia by Swedish astronomer Bengt Westerlund, who later moved from there to become ESO Director in Chile (1970-74). This cluster is behind a huge interstellar cloud of gas and dust, which blocks most of its visible light. The dimming factor is more than 100 000, and this is why it has taken so long to uncover the true nature of this particular cluster.

Westerlund 1 is a unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in the Milky Way live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100 000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way galaxy.

All the stars so far analysed in Westerlund 1 have masses at least 30-40 times that of the Sun. Because such stars have a rather short life - astronomically speaking - Westerlund 1 must be very young. The astronomers determine an age somewhere between 3.5 and 5 million years. So, Westerlund 1 is clearly a newborn cluster in our galaxy.

[2] The full designation for this star is Cl* Westerlund 1 W 5.

[3] As stars age, their nuclear reactions change their chemical make-up - elements that fuel the reactions are depleted and the products of the reactions accumulate. This stellar chemical fingerprint is first rich in hydrogen and nitrogen but poor in carbon and it is only very late in the lives of stars that carbon increases, by which point hydrogen and nitrogen will be severely reduced - it is thought to be impossible for single stars to be simultaneously rich in hydrogen, nitrogen and carbon, as Westerlund 1-5 is.

The research presented in this ESO Press Release will soon appear in the research journal Astronomy and Astrophysics ("A VLT/FLAMES survey for massive binaries in Westerlund 1: IV.Wd1-5 binary product and a pre-supernova companion for the magnetar CXOU J1647-45" by J. S. Clark et al.). The same team published a first study of this object in 2006 ("A Neutron Star with a Massive Progenitor in Westerlund 1" by M. P. Muno et al., Astrophysical Journal, 636, L41). The team is composed of Simon Clark and Ben Ritchie (The Open University, UK), Francisco Najarro (Centro de Astrobiologia, Spain), Norbert Langer (Universitat Bonn, Germany, and Universiteit Utrecht, the Netherlands) and Ignacio Negueruela (Universidad de Alicante, Spain).

.


Related Links
ESO
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Stability lost as supernovae explode
Heidelberg, Germany (SPX) May 16, 2014
Exploding supernovae are a phenomenon that is still not fully understood. The trouble is that the state of nuclear matter in stars cannot be reproduced on Earth. In a recent paper published in EPJ E, Yves Pomeau from the University of Arizona, USA, and his French colleagues from the CNRS provide a new model of supernovae represented as dynamical systems subject to a loss of stability, just befor ... read more


STELLAR CHEMISTRY
LRO View of Earth

Saturn in opposition tonight, will appear next to the moon

Russia to begin Moon colonization in 2030

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

STELLAR CHEMISTRY
When fantasy becomes reality: first seeds to be planted soon on Mars

NASA's Saucer-Shaped Craft Preps for Flight Test

Construction to Begin on NASA Mars Lander Scheduled to Launch in 2016

NASA Mars Rover Curiosity Wrapping Up Waypoint Work

STELLAR CHEMISTRY
Britain's Longitude Prize back after 300-year absence

Sea level rise forces US space agency to retreat

A light-speed voyage to the distant future

US spacecraft enters giant asteroid's orbit

STELLAR CHEMISTRY
Moon rover Yutu comes closer to public

The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

STELLAR CHEMISTRY
New ISS Expedition Unaffected by Proton Crash

US-Russian Tensions Roiling Outer Space Cooperation

Scientists Seek Answers With Space Station Thyroid Cancer Study

Rounding up the BCATs on the ISS

STELLAR CHEMISTRY
SpaceX's Dragon spacecraft returns to Earth from space station

SpaceX-3 Mission To Return Dragon's Share of Space Station Science

Third-stage engine glitch causes Proton-M accident

Russia's Roscosmos plans to launch two more Protons this year

STELLAR CHEMISTRY
Starshade Could Help Photograph Distant Planets

Giant telescope tackles orbit and size of exoplanet

Odd planet, so far from its star

New Exomoon Hunting Technique Could Find Solar System-like Moons

STELLAR CHEMISTRY
China says space debris recovered: report

MIPT Experts Reveal the Secret of Radiation Vulnerability

Physicists say they know how to turn light into matter

Australians report flaming object falling from sky




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.