Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




CHIP TECH
MIT researchers build Quad HD TV chip
by Larry Hardesty for MIT News
Boston MA (SPX) Feb 26, 2013


A new video-coding standard - known variously as ultrahigh-def (UHD), Quad HD or 4K - promises four times the resolution of today's high-definition video.

It took only a few years for high-definition televisions to make the transition from high-priced novelty to ubiquitous commodity - and they now seem to be heading for obsolescence just as quickly. At the Consumer Electronics Show (CES) in January, several manufacturers debuted new ultrahigh-definition, or UHD, models (also known as 4K or Quad HD) with four times the resolution of today's HD TVs.

In addition to screens with four times the pixels, however, UHD also requires a new video-coding standard, known as high-efficiency video coding, or HEVC. Also at CES, Broadcom announced the first commercial HEVC chip, which it said will go into volume production in mid-2014.

At the International Solid-State Circuits Conference this week, MIT researchers unveiled their own HEVC chip. The researchers' design was executed by the Taiwan Semiconductor Manufacturing Company, through its University Shuttle Program, and Texas Instruments (TI) funded the chip's development.

Although the MIT chip isn't intended for commercial release, its developers believe that the challenge of implementing HEVC algorithms in silicon helps illustrate design principles that could be broadly useful. Moreover, "because now we have the chip with us, it is now possible for us to figure out ways in which different types of video data actually interact with hardware," says Mehul Tikekar, an MIT graduate student in electrical engineering and computer science and one of the paper's co-authors. "People don't really know, 'What is the hardware complexity of doing, say, different types of video streams?'"

In the pipeline
Like older coding standards, the HEVC standard exploits the fact that in successive frames of video, most of the pixels stay the same. Rather than transmitting entire frames, it's usually enough for broadcasters to transmit just the moving pixels, saving a great deal of bandwidth. The first step in the encoding process is thus to calculate "motion vectors" - mathematical descriptions of the motion of objects in the frame.

On the receiving, end, however, that description will not yield a perfectly faithful image, as the orientation of a moving object and the way it's illuminated can change as it moves. So the next step is to add a little extra information to correct motion estimates that are based solely on the vectors. Finally, to save even more bandwidth, the motion vectors and the corrective information are run through a standard data-compression algorithm, and the results are sent to the receiver.

The new chip performs this process in reverse. It was designed by researchers in the lab of Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering and head of the MIT Department of Electrical Engineering and Computer Science. In addition to Chandrakasan and Tikekar, these include Chiraag Juvekar, another graduate student in Chandrakasan's group; former postdoc Chao-Tsung Huang; and former graduate student Vivienne Sze, now at TI.

The chip's first trick for increasing efficiency is to "pipeline" the decoding process: A chunk of data is decompressed and passed to a motion-compensation circuit, but as soon as the motion compensation begins, the decompression circuit takes in the next chunk of data. After motion compensation is complete, the data passes to a circuit that applies the corrective data and, finally, to a filtering circuit that smooths out whatever rough edges remain.

Fine-tuning
Pipelining is fairly standard in most video chips, but the MIT researchers developed a couple of other tricks to further improve efficiency. The application of the corrective data, for instance, is a single calculation known as matrix multiplication. A matrix is just a big grid of numbers; in matrix multiplication, numbers in the rows of one matrix are multiplied by numbers in the columns of another, and the results are added together to produce entries in a new matrix.

"We observed that the matrix has some patterns in it," Tikekar explains. In the new standard, a 32-by-32 matrix, representing a 32-by-32 block of pixels, is multiplied by another 32-by-32 matrix, containing corrective information. In principle, the corrective matrix could contain 1,024 different values. But the MIT researchers observed that, in practice, "there are only 32 unique numbers," Tikekar says. "So we can efficiently implement one of these [multiplications] and then use the same hardware to do the rest."

Similarly, Juvekar developed a more efficient way to store video data in memory. The "naive way," he explains, would be to store the values of each row of pixels at successive memory addresses. In that scheme, the values of pixels that are next to each other in a row would also be adjacent in memory, but the value of the pixels below them would be far away.

In video decoding, however, "it is highly likely that if you need the pixel on top, you also need the pixel right below it," Juvekar says. "So we optimize the data into small square blocks that are stored together. When you access something from memory, you not only get the pixels on the right and left, but you also get the pixels on the top and bottom in the same request."

Chandrakasan's group specializes in low-power devices, and in ongoing work, the researchers are trying to reduce the power consumption of the chip even further, to prolong the battery life of quad-HD cell phones or tablet computers. One design modification they plan to investigate, Tikekar says, is the use of several smaller decoding pipelines that work in parallel. Reducing the computational demands on each group of circuits would also reduce the chip's operating voltage.

.


Related Links
Massachusetts Institute Of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Graphene transistors give bioelectronics a boost
London, UK (SPX) Feb 26, 2013
Graphene-based transistors that respond to changes in chemical solutions could be used to link electronic devices directly to the human nervous system. That is the claim of researchers in Germany who have built arrays of devices that respond to changes in the electrolytes surrounding living cells. The team hopes that its research could result in retinal implants that could help some visually imp ... read more


CHIP TECH
Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

CHIP TECH
Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

Big Nickel Rock Target Ahead

NASA Rover Confirms First Drilled Mars Rock Sample

CHIP TECH
Choreographed to Perfection

ATK Launch Abort Motor For First Orion Test Vehicle

Supersonic skydiver's records confirmed

Kennedy Engineers Designing Plant Habitat For ISS

CHIP TECH
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

CHIP TECH
Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

CHIP TECH
SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

India's 102nd space mission lifts off successfully

Countdown begins for Indo-French satellite launch

CHIP TECH
NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

Earth-like planets are right next door

CHIP TECH
Tokyo hotel shrinks in new-style urban demolition

Fluids in Space, Shaken Not Stirred

The world's most sensitive plasmon resonance sensor inspired by ancient Roman cup

Sustainable new catalysts fueled by a single proton




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement