Subscribe free to our newsletters via your
. 24/7 Space News .




EXO WORLDS
MIT Researchers Find Clues To Planets' Birth
By David Chandler
Cambridge MA (SPX) Oct 31, 2008


This total melting of the planet-forming chunks of rock, called planetesimals, caused their constituents to separate out, with lighter materials including silicates floating to the surface and eventually forming a crust, while heavier iron-rich material sank down to the core, where it began swirling around to produce a magnetic dynamo. Illustration : Kouji KANBA

Meteorites that are among the oldest rocks ever found have provided new clues about the conditions that existed at the beginning of the solar system, solving a longstanding mystery and overturning some accepted ideas about the way planets form.

The ancient meteorites, like disk drives salvaged from an ancient computer, still contain magnetic records about the very early history of planets, according to research by MIT planetary scientist Benjamin P. Weiss.

Weiss, the Victor P. Starr Career Development Assistant Professor of Planetary Sciences in the Department of Earth, Atmospheric and Planetary Sciences, and his five co-authors examined pieces of three meteorites called angrites, which are among the most ancient rocks known. The results of their study are being published in Science on Oct. 31.

The analysis showed that surprisingly, during the formation of the solar system, when dust and rubble in a disk around the sun collided and stuck together to form ever-larger rocks and eventually the planets we know today, even objects much smaller than planets - just 160 kilometers across or so - were large enough to melt almost completely.

This total melting of the planet-forming chunks of rock, called planetesimals, caused their constituents to separate out, with lighter materials including silicates floating to the surface and eventually forming a crust, while heavier iron-rich material sank down to the core, where it began swirling around to produce a magnetic dynamo.

The researchers were able to study traces of the magnetic fields produced by that dynamo, now recorded in the meteorites that fell to Earth.

"The magnetism in meteorites has been a longstanding mystery," Weiss said, and the realization that such small bodies could have melted and formed magnetic dynamos is a major step toward solving that riddle.

Until relatively recently, it was commonly thought that the planetesimals - similar to the asteroids seen in the solar system today - that came together to build planets were "just homogenous, unmelted rocky material, with no large-scale structure," Weiss said.

"Now we're realizing that many of the things that were forming planets were mini-planets themselves, with crusts and mantles and cores."

That could change theorists' picture of how the planets themselves took shape. If the smaller bodies were already molten as they slammed together to build up larger planet-sized bodies, that could "significantly change our understanding" of the processes that took place in the early years of the nascent planets, as their internal structures were forming, Weiss said.

This could have implications for how different minerals are distributed in the Earth's crust, mantle and core today, for example.

"In the last five or 10 years," Weiss said, "our understanding of the early history of the solar system has undergone a sort of mini-revolution, driven by analytical advances in geochemistry. In this study we used a geophysical technique to independently test many of these new ideas. "

"Events happened surprisingly fast at the beginning of the solar system," he said. Some of the angrite meteorites in this study formed just 3 million years after the birth of the solar system itself, 4,568 million years ago, and show signs that their parent body had a magnetic field that was 20 to 40 percent as strong as Earth's today.

"We are used to thinking of dynamo magnetic fields in rocky bodies as uncommon phenomena today. But it may be that short-lived planetesimal dynamos were widespread in the early solar system."

The paper was co-authored by Mitsui Career Development Assistant Professor of Geology Linda Elkins-Tanton, research scientist Eduardo

A. Lima, postdoctoral researcher Laurent Carpozen, student James S. Berdahl, and Sabine Stanley, assistant professor of physics at the University of Toronto. The work was supported by a grant from the National Science Foundation's Instrumentation and Facilities Program.

.


Related Links
MIT
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO WORLDS
Young Earthlike Planets May Glow Brightly Enough To Be Found
Boston MA (SPX) Oct 17, 2008
Hot, young planets may be easier to spot because they stay that way longer than astronomers have thought, according to new work by MIT planetary scientist Linda Elkins-Tanton. For a few million years after their initial formation, planets like Earth may maintain a hot surface of molten rock that would glow brightly enough to make them stand out as they orbit neighboring stars. Elkins ... read more


EXO WORLDS
NASA Ames Collaborates To Develop Robotic Lunar Lander

ESA's Lunar Robotics Challenge

NASA Tests Rover Concepts In Arizona

NASA's Next Moon Mission Begins Thermal Vacuum Test

EXO WORLDS
Phoenix Goes Quiet

Strange Martian Landforms Are Paleo Climate Clues

Phoenix Enters Safe Mode

NASA's Phoenix Mission Faces Survival Challenges

EXO WORLDS
NASA, South Korea sign mutual statement

Harris' OS/COMET Product Chosen For Constellation Launch Control Program

Do We Need Oil From Outer Space

Astronauts To Vote From Space

EXO WORLDS
Souped-Up Rockets For Shenzhou

China Successfully Launches Research Satellites

China To Launch FY-4 Weather Satellite Around 2013

Shenzhou 7 Astronauts In Good Health

EXO WORLDS
Expedition 17 Set To Undock Today

Expedition 18 Takes Charge

Expedition 18 Crew Docks With Space Station

Expedition 18 Crew Launches From Baikonur

EXO WORLDS
New ASTRA 1M Satellite Ready For Launch On 6 November

SPACEHAB Sees Opportunity In Space Florida's Launch Complex

First Ariane 5 For 2009 Arrives At The Spaceport

GOCE Launch Delayed Until 2009

EXO WORLDS
MIT Researchers Find Clues To Planets' Birth

Young Earthlike Planets May Glow Brightly Enough To Be Found

Exotic Weather On Distant Worlds

Tides Have Major Impact On Planet Habitability

EXO WORLDS
The Sky Isn't Falling And That's A Problem

Sarantel Antenna Featured In New Iridium 9555 Satellite Phone

NASA Launches IBEX Mission To Outer Solar System

MSV Awarded Patents For Next-Gen Satellite-Terrestrial Comms Network




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement