Subscribe free to our newsletters via your
. 24/7 Space News .




BLUE SKY
MIPT Develops Unique Greenhouse Gas Meter
by Staff Writers
Moscow, Russia (SPX) Jun 19, 2014


The meter uses the heterodyne principle, known for over 100 years.

MIPT's Laboratory for the Spectroscopy of Planetary Atmospheres has come up with a high-resolution meter to gauge the concentration of gases in the atmosphere with unparalleled precision. The infrared spectrum radiometer is described in an article recently published in the journal Optics Express.

The paper, authored by Alexander Rodin, Artem Klimchuk, Alexander Nadezhdinsky, Dmitry Churbanov and Maxim Spiridonov, says that the new spectrum radiometer is 100 times more precise than the best available near-infrared spectrometers, and 10 times more accurate than a meter created on a similar principle recently described by NASA's Goddard Center.

Tracking down carbon dioxide, methane and other gases with simultaneous determination of their concentrations at different altitudes is necessary, in particular, for research into global warming. The vast majority of scientists do not doubt the correlation between growing temperatures on the planet and the greenhouse effect, but so far it has been impossible to positively predict future changes in global warming.

A current lack of data on the distribution of greenhouse gases also compromises the forecasting and, consequently, the development of appropriate response measures. This is because in order to create a dense network of monitoring stations, many large, sophisticated and expensive spectrometers are needed.

The meter created by the Russian scientists is distinctive not only for its very high resolution, but also for its easy maintenance. The authors of the paper stress that their meter is far less susceptible to external disturbances compared with existing analogues. Its performance depends to a lesser extent on vibration, humidity and exposure to both low and high temperatures.

Alexander Rodin explained that the meter uses the heterodyne principle, known for over 100 years. The essence of the method could be best described as follows: a received signal is added to a reference signal to form an intermediate frequency signal. Generally, it does not matter whether it's a radio wave or sunlight passing through the atmosphere, as is the case in the new meter.

The converted signal is much easier to process, namely to amplify and to filter. Moreover, when the frequency of the reference signal is sufficiently stable, extremely high sensitivity can be achieved. The only problem is that a signal of very high frequency, whether it is infrared or optical, is not so easy to add to the reference source - it must be very stable and at the same time emit radiation of high intensity.

The first heterodyne radios, operating at megahertz frequencies, were created in the early 20th century, becoming mass-produced toward the end of the Second World War; while in the terahertz sphere heterodyne devices appeared only recently. For near-infrared radiation, whose frequency is a few hundred times greater, the task of combining the signals appeared to be compounded by a number of technical difficulties.

Calculations showed that a more "touchy" device is needed for a heterodyne signal in the near infrared radiation spectrum. Even a shift of a few hundredths of a wavelength (i.e. a couple of dozen nanometers) could be critical, but eventually the researchers from MIPT and their colleagues from the Moscow-based General Physics Institute managed to create a heterodyne near-infrared detector, in which a key role was played by laser stabilization.

They used an optical system that directs a laser beam to two different points, one of them a special module for mixing it with sunlight passed through the atmosphere (i.e. the analyzed signal) and the other a cell with a pure sample of the gas to be identified.

Since the gas absorbs electromagnetic waves at a specific frequency, the brightness of the radiation going through the cell indicates how far the laser has deviated from the reference frequency. And this, in turn, makes it possible to adjust the frequency of the optical oscillator, i.e. laser (the word laser is an acronym of "light amplification by stimulated emission of radiation").

New spectrum radiometers may be used at both stationary and mobile stations monitoring the atmosphere, according to the official site of the IVOLGA project, which is another abbreviation translated from Russian as "infrared heterodyne fiber analyzer."

.


Related Links
Moscow Institute of Physics and Technology
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BLUE SKY
New NASA Space Observatory to Study Carbon Conundrums
Pasadena CA (JPL) Jun 13, 2014
NASA's first spacecraft dedicated to measuring carbon dioxide levels in Earth's atmosphere is in final preparations for a July 1 launch from Vandenberg Air Force Base, California. The Orbiting Carbon Observatory-2 (OCO-2) mission will provide a more complete, global picture of the human and natural sources of carbon dioxide, as well as their "sinks," the natural ocean and land processes by ... read more


BLUE SKY
NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

BLUE SKY
NASA Invites Comment on Mars 2020 Environmental Impact Statement

Opportunity is exploring the west rim of Endeavour Crater

Discovery of Earth's Northernmost Perennial Spring

US Congress and Obama administration face obstacles in Mars 2030 project

BLUE SKY
NASA Turns Down the Volume on Rocket Noise

Duo Tries on Spacesuits While Advanced Microgravity Science Continues

Five Things We'll Learn from Orion's First Flight Test

Coffee for cosmonauts! First 'ISSpresso' machine to arrive in space

BLUE SKY
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

BLUE SKY
D-Day for the International Space Station

US expects to continue partnership with Russia on ISS after 2020

Station Crew Wraps Up Week With Medical Research

Decontamination System to Up Research on Space Station

BLUE SKY
European satellite chief says industry faces challenges

Payload fueling begins for nexy Arianespace Soyuz flight

Arianespace A World Leader In The Satellite Launch Market

Airbus Group and Safran To Join Forces in Launcher Activities

BLUE SKY
Mega-Earth in Draco Smashes Notions of Planetary Formation

Kepler space telescope ready to start new hunt for exoplanets

Astronomers Confounded By Massive Rocky World

Two planets orbit nearby ancient star

BLUE SKY
Scientists see Earth's most abundant mineral for the first time

Researchers develop efficient approach to manufacture 3D metal parts

Selex ES is upgrading RAT 31 DL radar in Turkey

Defense against laser beam flashes at aircraft being tested




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.