Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE SCOPES
Lockheed Martin-Built Instruments See First Light On SDO
by Staff Writers
Palo Alto CA (SPX) Apr 23, 2010


Artist impression of the SDO spacecraft. Flying in a geosynchronous orbit, SDO observes the Sun 24 hours a day without interruption, and downlinks its data to the Science Operations Center at Stanford University. Quick look data is available in near real time for assessment of current solar weather. Processed data will be available to both scientists and the general public as soon as its quality can be evaluated - usually on the order of a day. Public tools for searching the SDO database and for creating a variety of movies will be available.

Spectacular "first light" images and data from the three state-of-the art instruments on NASA's Solar Dynamics Observatory (SDO) were unveiled yesterday morning by NASA. The SDO spacecraft was launched aboard a United Launch Alliance Atlas V rocket from the Cape Canaveral Air Force Station on February 11, 2010.

Two of the SDO instruments were built at the Solar and Astrophysics Laboratory of the Lockheed Martin [NYSE: LMT] Advanced Technology Center (ATC) in Palo Alto. The Atmospheric Imaging Assembly (AIA), a suite of four telescopes, provides an unprecedented view of the solar corona, taking images that span at least 1.3 solar diameters in multiple wavelengths nearly simultaneously, at a resolution of 0.6 arc-seconds and at a cadence of 10 seconds or better.

The Helioseismic and Magnetic Imager (HMI), designed in collaboration with Professor Philip Scherrer, HMI Principal Investigator, and other scientists at Stanford University, studies the origin of solar variability and attempts to characterize and understand the Sun's interior and magnetic activity. The third SDO instrument, the Extreme Ultraviolet Variability Experiment (EVE), measures fluctuations in the Sun's ultraviolet output. EVE was built by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado.

"We could not be more pleased with what we're seeing from AIA. The 4096 by 4096 pixel Charge-Coupled Device (CCD) on this instrument gives us images that would require 12 high definition televisions to display them at their native resolution," said physicist - and Principal Investigator of AIA - Dr. Alan Title of the ATC.

"AIA is now providing the kind of data we need to unravel mysteries of the Sun that have been just beyond our grasp. Looking at a razor sharp full Sun in a broad range of temperature bands every 10 seconds will give us unprecedented insight into the processes that determine the evolution of the corona."

The AIA produces data required for quantitative studies of the evolving coronal magnetic field, and the plasma it holds, both in quiescent phases and during flares and eruptions.

The primary goal of the AIA Science Investigation is to use these data, together with data from other SDO instruments and from other observatories, to significantly improve our understanding of the physics behind the activity displayed by the Sun's atmosphere, which drives space weather in the heliosphere and in planetary environments. Ultimately, it is hoped that the greater understanding gained of the observed processes will guide development of advanced forecasting tools needed by the user community.

"HMI combined with our partner instruments on SDO - the Atmospheric Imaging Assembly and the Extreme Ultraviolet Variability Experiment - are providing us with the data needed to first learn if predictions of solar activity are possible," said Professor Scherrer. "Then, if we and our colleagues in the solar physics community are clever enough, we'll actually develop forecast methods. This is an exciting time for studying the Sun and its impact on the Earth."

The primary goal of the HMI investigation on SDO is to study the origin of solar variability and to characterize and understand the Sun's interior and magnetic activity. Because of the turbulence in the convection zone near the surface, the Sun is figuratively ringing like a bell. By studying these oscillations of the visible surface of the Sun, considerable insight can be gained into the processes inside.

In effect the solar turbulence is analogous to earthquakes. In manner similar to how seismologists can learn about the interior of the Earth by studying the waves generated in an earthquake. HMI's helioseismologists learn about the structure, temperature and flows in the solar interior.

"HMI is providing us with sonograms of the Sun that will show us sunspots and magnetic fields before they appear on the visible surface," added Dr. Alan Title - co-investigator on HMI. "We're even able to see through the Sun and be aware of the birth of spots on the side facing away from us, allowing us to be ready for them as they rotate into our view. Moreover, HMI's high spatial resolution and full-Sun coverage gives us much more time to study magnetic field evolution in detail."

HMI produces data necessary to determine the interior sources and mechanisms of solar variability and how the physical processes inside the Sun are related to surface magnetic field and activity.

Because HMI can measure the strength and direction of the magnetic field on the surface, more precise estimates of the coronal magnetic field are possible. In addition, HMI observations will clarify the relationships between internal solar dynamics and magnetic activity, providing a better understanding of solar variability and its effects. The knowledge gained will enable a major advance in the development of a reliable predictive capability for solar flares and coronal mass ejections.

Solar scientists will use the third instrument on SDO - the Extreme Ultraviolet Variability Experiment (EVE) - to measure the Sun's brightness in the most variable and unpredictable part of the solar spectrum. The extreme ultraviolet, or EUV, ranges in wavelength from 0.1 to 105 nm. EVE collects spectra over a broad EUV to UV range from the entire Sun. EVE and AIA will be able together to establish how local events like flares affect the entire solar spectrum.

The goal of SDO is to understand - striving towards a predictive capability - the solar variations that influence life on Earth and humanity's technological systems. The mission seeks to determine how the Sun's magnetic field is generated and structured, and how this stored magnetic energy is converted and released into the heliosphere and geospace in the form of solar wind, energetic particles, and variations in the solar irradiance.

Flying in a geosynchronous orbit, SDO observes the Sun 24 hours a day without interruption, and downlinks its data to the Science Operations Center at Stanford University. Quick look data is available in near real time for assessment of current solar weather. Processed data will be available to both scientists and the general public as soon as its quality can be evaluated - usually on the order of a day. Public tools for searching the SDO database and for creating a variety of movies will be available.

SDO is the most advanced spacecraft ever designed to study the Sun and its dynamic behavior. SDO will provide better quality, more comprehensive science data faster than any NASA spacecraft currently studying the Sun and its processes. SDO will unlock the secrets of how our nearest star sustains life on Earth, affects the planets of our solar system and beyond.

.


Related Links
Solar Dynamics Observatory
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SPACE SCOPES
Award Boosts Australian SKA Effort
Sydney, Australia (SPX) Apr 20, 2010
CSIRO has been awarded three of the Australian Research Council's new Super Science Fellowships, worth a total of $835,000 over three years, to develop technology for the international Square Kilometre Array (SKA) radio telescope. The CSIRO winners were among 100 Fellows announced yesterday by the Minister for Science, Senator Kim Carr, at the headquarters of CSIRO Astronomy and Space Scie ... read more


SPACE SCOPES
Seed Bank For The Moon

Craters Around Lunar Poles Could Be Electrified

NASA Announces Winners Of 17th Annual Great Moonbuggy Race

Autarky In Space

SPACE SCOPES
Clues About Mars Evolution Revealed

Obama sets new course to conquer the final frontier

Spirit Awaits Winter At Troy

Picking Up Pace To Endeavour Crater

SPACE SCOPES
Commercial paradigm brings inventors down to earth

Japan eyes 'mind-reading' devices, robots by 2020: report

Megatrends And Megashocks The Future Awaits

418th FLTS Breaks Record With Heaviest Airdrop

SPACE SCOPES
China To Launch Second Lunar Probe This Year

China, Bolivia to build communications satellite

China To Complete Wenchang Space Center By 2015

China To Conduct Maiden Space Docking In 2011

SPACE SCOPES
Russian Space Freighter Undocks From ISS

Japan astronaut solves bubble puzzle

Celebrating The ISS And Preparing For The Future

Faulty ISS cooling system could force new space walk: NASA

SPACE SCOPES
Russia launches US satellite into space

Mexico To Create Its First Space Center On Yucatan Peninsula

Russia Confirms Plans Of Rocket Launch From French Guiana In 2010

Task Force To Conduct Quality Audit On Ariance Launch Campaign Process

SPACE SCOPES
Planet discovered lacking methane

'This Planet Tastes Funny,' According To Spitzer

Small, Ground-Based Telescope Images Three Exoplanets

Wet Rocky Planets A Dime A Dozen In The Milky Way

SPACE SCOPES
Materials Research Advances Reliability Of Faster Smart Sensors

Online conferencing takes off as volcano grounds planes

IBM raises earnings outlook as technology spending improves

NGC Completes System Development Of B-2 Radar Modernization Program




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement