Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
CO2 sequestration process produces supergreen hydrogen fuel, offsets ocean acidification
by Anne M Stark for LLNL News
Livermore CA (SPX) May 29, 2013


The Great Barrier Reef in Australia already has been affected by ocean warming and acidification.

Lawrence Livermore scientists have discovered and demonstrated a new technique to remove and store atmospheric carbon dioxide while generating carbon-negative hydrogen and producing alkalinity, which can be used to offset ocean acidification.

The team demonstrated, at a laboratory scale, a system that uses the acidity normally produced in saline water electrolysis to accelerate silicate mineral dissolution while producing hydrogen fuel and other gases. The resulting electrolyte solution was shown to be significantly elevated in hydroxide concentration that in turn proved strongly absorptive and retentive of atmospheric CO2.

Further, the researchers suggest that the carbonate and bicarbonate produced in the process could be used to mitigate ongoing ocean acidification, similar to how an Alka Seltzer neutralizes excess acid in the stomach.

"We not only found a way to remove and store carbon dioxide from the atmosphere while producing valuable H2, we also suggest that we can help save marine ecosystems with this new technique," said Greg Rau, an LLNL visiting scientist, senior scientist at UC Santa Cruz and lead author of a paper appearing in the Proceedings of the National Academy of Sciences.

When carbon dioxide is released into the atmosphere, a significant fraction is passively taken up by the ocean forming carbonic acid that makes the ocean more acidic. This acidification has been shown to be harmful to many species of marine life, especially corals and shellfish.

By the middle of this century, the globe will likely warm by at least 2 degrees Celsius and the oceans will experience a more than 60 percent increase in acidity relative to pre-industrial levels. The alkaline solution generated by the new process could be added to the ocean to help neutralize this acid and help offset its effects on marine biota. However, further research is needed, the authors said.

"When powered by renewable electricity and consuming globally abundant minerals and saline solutions, such systems at scale might provide a relatively efficient, high-capacity means to consume and store excess atmospheric CO2 as environmentally beneficial seawater bicarbonate or carbonate," Rau said. "But the process also would produce a carbon-negative 'super green' fuel or chemical feedstock in the form of hydrogen."

Most previously described chemical methods of atmospheric carbon dioxide capture and storage are costly, using thermal/mechanical procedures to concentrate molecular CO2 from the air while recycling reagents, a process that is cumbersome, inefficient and expensive.

"Our process avoids most of these issues by not requiring CO2 to be concentrated from air and stored in a molecular form, pointing the way to more cost-effective, environmentally beneficial, and safer air CO2 management with added benefits of renewable hydrogen fuel production and ocean alkalinity addition," Rau said.

The team concluded that further research is needed to determine optimum designs and operating procedures, cost-effectiveness, and the net environmental impact/benefit of electrochemically mediated air CO2 capture and H2 production using base minerals.

Other Livermore researchers include Susan Carroll, William Bourcier, Michael Singleton, Megan Smith and Roger Aines.

.


Related Links
Lawrence Livermore
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Catching graphene butterflies
Manchester, UK (SPX) May 17, 2013
Writing in Nature, a large international team led Dr Roman Gorbachev from The University of Manchester shows that, when graphene placed on top of insulating boron nitride, or 'white graphene', the electronic properties of graphene change dramatically revealing a pattern resembling a butterfly. The pattern is referred to as the elusive Hofstadter butterfly that has been known in theory for ... read more


CARBON WORLDS
Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

Moon being pushed away from Earth faster than ever

Bright Explosion on the Moon

CARBON WORLDS
Opportunity Departing 'Cape York'

Bacterium from Canadian High Arctic and life on Mars

Curiosity Drills Second Rock Target

Mars Rover Opportunity Examines Clay Clues in Rock

CARBON WORLDS
Northrop Grumman-Built Modular Space Vehicle Nears Completion of Manufacturing Phase

French government posts space counsellor in Bangalore

3D Printing: Food in Space

Chinese group bids for Club Med holidays: firms

CARBON WORLDS
Shopping for Shenzhou

Waiting for Shenzhou 10

China launches communications satellite

On Course for Shenzhou 10

CARBON WORLDS
International trio takes shortcut to space station

Science and Maintenance for Station Crew, New Crew Members Prep for Launch

ESA Euronews: Living in space

Next destination: space

CARBON WORLDS
First Light Angara Rocket Ready for Launch

Russia to launch 12 Proton-M rockets in 2013

Russian Spacecraft Manufacturer to Make Four Launches in 2014

Electric Propulsion

CARBON WORLDS
Big Weather on Hot Jupiters

Critical Kepler Reaction Wheel Fails: Mission End In Sight

Sifting Through the Atmosphere's of Far-Off Worlds

New Method of Finding Planets Scores its First Discovery

CARBON WORLDS
Helicopter-light-beams - a new tool for quantum optics

Just how secure is quantum cryptography

One Year Anniversary of KOMPSAT-3 Launch

Crystal-clear method for distinguishing between glass and fluids




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement