Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Live Images from the Nano-cosmos
by Staff Writers
Hamburg, Germany (SPX) Nov 06, 2014


Artist's impression of the multilayer growth of buckyballs. Image courtesy Nicola Kleppmann and TU Berlin .

Many pollutants with the potential to meddle with hormones - with bisphenol A (BPA) as a prime example - are already common in the environment. In an effort to clean up these pollutants found in the soil and waterways, scientists are now reporting a novel way to break them down by recruiting help from nanoparticles and light.

The study appears in the journal ACS Applied Materials and Interfaces.

Nikhil R. Jana and Susanta Kumar Bhunia explain that the class of pollutants known as endocrine disruptors has been shown to either mimic or block hormones in animals, including humans.

That interference can cause reproductive and other health problems. The compounds are used to make many household and industrial products, and have been detected in soil, water and even human breast milk.

Scientists have been working on ways to harness sunlight to break down endocrine disruptors to make them less of a health threat. But the approaches so far only work with ultraviolet light, which at a mere 6 percent of sunlight, means these methods are not very efficient. Jana and Bhunia wanted to find a simple way to take advantage of visible light, which comprises 52 percent of sunlight.

For inspiration, the researchers turned to an already-developed graphene composite that uses visible light to degrade dyes. They tweaked the composite and loaded it with silver nanoparticles that serve as an antenna for visible light.

When they tested it, the new material successfully degraded three different kinds of endocrine disruptors: phenol, BPA and atrazine. They conclude that their composite is a promising way to harness visible light to break down these potentially harmful compounds and other organic pollutants.

"Unravelling the multilayer growth of the fullerene C60 in real-time"; Sebastian Bommel, Nicola Kleppmann et al.; Nature Communications, 2014; DOI: 10.1038/ncomms6388


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Deutsches Elektronen-Synchrotron
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Outsmarting Thermodynamics in Self-assembly of Nanostructures
Berkeley CA (SPX) Nov 05, 2014
If you can uniformly break the symmetry of nanorod pairs in a colloidal solution, you're a step ahead of the game toward achieving new and exciting metamaterial properties. But traditional thermodynamic -driven colloidal assembly of these metamaterials, which are materials defined by their non-naturally-occurring properties, often result in structures with high degree of symmetries in the bulk m ... read more


NANO TECH
China examines the three stages of lunar test run

China gears up for lunar mission after round-trip success

NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

New lunar mission to test Chang'e-5 technology

NANO TECH
NASA's Curiosity Mars Rover Finds Mineral Match

MAVEN Continues Mars Exploration Begun 50 Years Ago by Mariner 4

You can't get to Mars, but your name can

A One Way Trip to Mars

NANO TECH
Orion Takes Big Step Before Moving to the Launch Pad

NASA Program Enhances Climate Resilience at Agency Facilities

SpaceShipTwo Manufacturer May Face Setback After Crash in California

Eye-catching space technology restoring sight

NANO TECH
China's Lunar Orbiter Makes Safe Landing, First in 40 Years

China's First Lunar Return Mission A Stunning Success

China completes first mission to moon and back

Wenchang to launch China's next space station

NANO TECH
ISS Agency Heads Issue Joint Statement

Station Trio Prepares for Departure amid Ongoing Science

Students text International Space Station using a 20-foot antenna

Student Experiments Lost in Antares Rocket Explosion

NANO TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Spaceflight partners with JAMSS to loft 8 CubeSats on JAXA mission

Arianespace signs contract with ELV for ten Vega launchers

NASA Completes Initial Assessment after Orbital Launch Mishap

NANO TECH
Peering into Planetary Atmospheres

VLTI detects exozodiacal light

Yale finds a planet that won't stick to a schedule

In a first, astronomers map comets around another star

NANO TECH
ORNL materials researchers get first look at atom-thin boundaries

From earphones to jet engines, 3D printing takes off

ESA space ferry moves ISS to avoid debris

EIAST and AUS launch UAE's first CubeSat Mission Nayif-1




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.