Subscribe free to our newsletters via your

. 24/7 Space News .

Light squeezed on a quantum scale
by Staff Writers
Brisbane, Australia (SPX) Sep 24, 2012

illustration only

An international team of physicists has pushed the boundaries on ultra-precise measurement by harnessing quantum light waves in a new way.

It is one thing to be able to measure spectacularly small distances using "squeezed" light, but it is now possible to do this even while the target is moving around.

An Australian-Japanese research collaboration made the breakthrough in an experiment conducted at the University of Tokyo, the results of which have been published in an article, "Quantum-enhanced optical phase tracking" in the prestigious journal, Science.

Leader of the international theoretical team Professor Howard Wiseman, from Griffith University's Centre for Quantum Dynamics, said this more precise technique for motion tracking will have many applications in a world which is constantly seeking smaller, better and faster technology.

"At the heart of all scientific endeavour is the necessity to be able to measure things precisely," Professor Wiseman said.

"Because the phase of a light beam changes whenever it passes through or bounces off an object, being able to measure that change is a very powerful tool."

"By using squeezed light we have broken the standard limits for precision phase tracking, making a fundamental contribution to science," he said. "But we have also shown that too much squeezing can actually hurt."

Dr Dominic Berry from Macquarie University has been collaborating with Professor Wiseman on the theory of this problem for many years.

"The key to this experiment has been to combine "phase squeezing" of light waves with feedback control to track a moving phase better than previously possible," Dr Berry said.

"Ultra-precise quantum-enhanced measurement has been done before, but only with very small phase changes. Now we have shown we can track large phase changes as well," he said.

Professor Elanor Huntington from UNSW Canberra, who directed the Australian experimental contribution, is a colleague of Professor Wiseman in the Centre for Quantum Computation and Communication Technology.

"By using quantum states of light we made a more precise measurement than is possible through the conventional techniques using laser beams of the same intensity," Professor Huntington said.

Curiously, we found that it is possible to have too much of a good thing. Squeezing beyond a certain point actually degrades the performance of the measurement making it less precise than if we had used light with no squeezing."

Participating research organisations: The University of Tokyo, Griffith University, Centre for Quantum Computation and Communication Technology (Australian Research Council), University of New South Wales (Canberra), Kyoto University, University of Waterloo (Ontario), Macquarie University, University of Queensland.


Related Links
Griffith University
Understanding Time and Space

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Experiment in University of Florida laboratory corrects prediction in quantum theory
Gainesville, FL (SPX) Sep 21, 2012
An international team of scientists is rewriting a page from the quantum physics rulebook using a University of Florida laboratory once dubbed the coldest spot in the universe. Much of what we know about quantum mechanics is theoretical and tested via computer modeling because quantum systems, like electrons whizzing around the nucleus of an atom, are difficult to pin down for observation. ... read more

Protection for Moon, Mars astronauts eyed

Russia to start research base on the Moon

Remains of astronaut legend Neil Armstrong buried at sea

Memorial service honors 'man on the moon' Armstrong

NASA-JPL director Charles Elachi talks about latest Mars mission

NASA Mars Rover Targets Unusual Rock En Route to First Destination

Dark Bands Run Through Light Layers

NASA Mars Rover Curiosity Looks at Ground Ahead, Moons Above

B612 Wins Funding Support From Prominent Business Leadersy

Cavenauts return to Earth

Brazil unveils tax incentives to boost tech innovation

New Technology Being Stymied by Copyright Law

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

China unveils ambitious space projects

Crew Members Prepare for Departure

ISS Crew Lands Safely in Kazakhstan

ISS Crew Enjoys Light Duty Day

Europe's ATV-3 Spacecraft to Readjust Space Station's Orbit

Processing is underway with the next Automated Transfer Vehicle to be orbited by Arianespace

Fueling underway with the Galileo satellites for next Soyuz launch from French Guiana

SpaceX, NASA Target Oct. 7 Launch For Resupply Mission To Space Station

Failure Review Oversight Board Establishes Proton Return to Flight Schedule

Meteors Might Add Methane to Exoplanet Atmospheres

Two 'hot Jupiters' found in star cluster: NASA

Planets Can Form in the Galactic Center

Birth of a planet

'5,000 police' quell Foxconn brawl: state media

Apple seeks more damages in wake of win against Samsung

ORNL research uncovers path to defect-free thin films

Humans were already recycling 13,000 years ago

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement