Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Less is more for reef-building corals
by Staff Writers
Manoa HI (SPX) Aug 31, 2012


This shows Pocillopora coral and fish in Moorea, French Polynesian, the study site for the National Science Foundation's Moorea Coral Reef Long-Term Ecological Research. Credit: Hollie Putnam, University of Hawaii - SOEST.

Researchers at the University of Hawaii - Manoa (UHM) School of Ocean and Earth Science and Technology (SOEST) made a discovery that challenges a major theory in the field of coral reef ecology. The general assumption has been that the more flexible corals are, regarding which species of single celled algae (Symbiodinium) they host in coral tissues, the greater ability corals will have to survive environmental stress.

In their paper, however, scientists at the Hawaii Institute of Marine Biology (HIMB) at SOEST and colleagues documented that the more flexible corals are, the more sensitive to environment disturbances they are.

"This is exactly the opposite of what we expected," said Hollie Putnam, PhD candidate at UHM and lead author of the study. This finding was surprising, as it is thought corals exploit the ability to host a variety of Symbiodinium to adapt to climate change. "Our findings suggest more is not always better," she continued.

"The relationship of coral species to their algal symbionts is fundamental to their biology," says David Garrison, program director in the National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the research. "This study gives us a new understanding of how corals are likely to respond to the stresses of environmental change."

Reef corals are the sum of an animal (host), and single celled algae that live inside the corals' tissues (also called 'endosymbionts'). This is a mutually beneficial arrangement - the coral provide protection and keep the algae in shallow, sunlit seas; and the algae produce large amounts of energy through photosynthesis, which coral use to survive and build their skeletons.

The stability of this symbiosis is critical to the survival of corals and if they lose their endosymbionts they bleach and often die. Corals can host different types of endosymbionts, which affects their response to stress.

Putnam and other scientists from Dr. Ruth Gates' laboratory at HIMB took tiny tissue samples from 34 species of coral in Moorea, French Polynesia. By analyzing the DNA from the endosymbionts in these samples, they were able identify the types of Symbiodinium.

This revealed that some corals host a single Symbiodinium type that is the same in all individuals of that coral species, and that others host many types that vary among individuals within a coral species.

"The corals we sampled spanned a range of environmental sensitivities from resistant to susceptible, and we were able to link, for the first time, patterns in environmental performance of corals to the number and variety of symbionts they host," reported Putnam.

These patterns show that corals hosting diverse Symbiodinium communities, those that are flexible with respect to endosymbionts (termed 'generalists'), are environmentally sensitive. In contrast, environmentally resistant corals were those that associate with one or few specific types of Symbiodinium (termed 'specifists').

"Coral reefs are economically and ecologically important, providing a home for a high diversity of organisms necessary for food supplies, recreation, and tourism in many countries. The better we understand how corals respond to stress, the more capable we will be to forecast and manage future reefs communities," said senior author Professor Ruth Gates.

Coral reefs can undergo mass mortality due to high temperatures, and ocean acidification is threatening the capacity for skeletal growth. These global stressors are superimposed on the local threats of pollution, coastal development and overfishing, together threatening the persistence of corals as a functional ecosystem in the future.

In the future, the Gates Lab will examine what causes the differences in success between corals that are flexible and inflexible in their Symbiodinium associations and compare the symbiotic flexibility in corals and reefs across much larger areas - in locations such as Hawaii, Moorea, Taiwan and American Samoa. This further understanding will allow better predictions of the future of reefs under further ocean warming and acidification.

The research was conducted at NSF's Moorea Coral Reef Long-Term Ecological Research (LTER) site, one of 26 such NSF sites around the globe in ecosystems from coral reefs to freshwater lakes, and from forests to grasslands. To read the Award Abstract for this work click here. Proceedings of the Royal Society B: Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals; Hollie M Putnam, Michael Stat, Xavier Pochon, and Ruth D Gates.

.


Related Links
Ruth Gates Lab
Moorea Coral Reef Long Term Ecological Research program
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
New Maps May Reduce Tourism Impacts on Hawaiian Dolphins
Durham NC (SPX) Aug 30, 2012
Over-eager tourists intent on seeing spinner dolphins up close may inadvertently be disturbing the charismatic animals' daytime rest periods and driving them out of safe habitats in bays along Hawai'i's coast. But a study led by researchers at Duke and Stony Brook universities gives scientists and resource managers a promising new tool to curb the frequency of the repeated human disturbances and ... read more


WATER WORLD
Walls of Lunar Crater May Hold Patchy Ice, LRO Radar Finds

Russia's moonshot hope 'not a dream'

A "Blue Moon" Heralds the Harvest

New research eclipses existing theories on moon formation

WATER WORLD
Marks of Laser Exam on Martian Soil

Opportunity Drives And Images Rock Outcrop

Opportunity Exceeds 35 Kilometers of Driving!

Mars suitable for colonization

WATER WORLD
XCOR Announces AdamWorks as Lynx Mark I Cockpit Manufacturer

Manned interplanetary missions on NASA's agenda

Space race, on a budget, was not how Armstrong saw it

Research and Technology Studies 2012

WATER WORLD
China eyes next lunar landing as US scales back

China unveils ambitious space projects

Is China Going to Blast Past America in Space?

Hong Kong people share joy of China's manned space program

WATER WORLD
Astronauts Complete Second Expedition 32 Spacewalk

Crew Makes Final Preps for Thursday's Spacewalk

Dragon Spacecraft Set to Make Second Run for ISS

Europe's ATV-3 Space Freighter Raises ISS Orbit to 420 km

WATER WORLD
First-Stage Fuel Loaded; Launch Weather Forecast Improves

NASA launches mission to explore radiation belts

ISRO to score 100 with a cooperative mission Sep 9

NASA Administrator Announces New Commercial Crew And Cargo Milestones

WATER WORLD
How Old are the First Planets?

Kepler discovers planetary system orbiting 2 suns

NASA, Texas astronomers find first multi-planet system around a binary star

Planet search moves to Antarctica

WATER WORLD
Nanoresonators might improve cell phone performance

Japan court rejects patent claims against Samsung as Apple files More US actions

ThalesRaytheonSystems awarded contract by US Army to upgrade Firefinder Radars

Stable isotopes a universal tool




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement