Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
Large bacterial population colonized land 2.75 billion years ago
by Vince Stricherz
Seattle WA (SPX) Sep 25, 2012


A drill core from the 2.5 billion-year-old Mount McRae Shale formation in Western Australia, which originally was fine-grained ocean sediment, shows high concentrations of sulfide and molybdenum. That supports the idea that most of the sulfate came from land, likely freed by microbial activity on rocks. Some data for the research came from the Mount McRae formation. Photo courtesy Roger Buick/UW.

There is evidence that some microbial life had migrated from the Earth's oceans to land by 2.75 billion years ago, though many scientists believe such land-based life was limited because the ozone layer that shields against ultraviolet radiation did not form until hundreds of millions years later.

But new research from the University of Washington suggests that early microbes might have been widespread on land, producing oxygen and weathering pyrite, an iron sulfide mineral, which released sulfur and molybdenum into the oceans.

"This shows that life didn't just exist in a few little places on land. It was important on a global scale because it was enhancing the flow of sulfate from land into the ocean," said Eva Stueken, a UW doctoral student in Earth and space sciences.

In turn, the influx of sulfur probably enhanced the spread of life in the oceans, said Stueken, who is the lead author of a paper presenting the research published Sunday (Sept. 23) in Nature Geoscience. The work also will be part of her doctoral dissertation.

Sulfur could have been released into sea water by other processes, including volcanic activity. But evidence that molybdenum was being released at the same time suggests that both substances were being liberated as bacteria slowly disintegrated continental rocks, she said.

If that is the case, it likely means the land-based microbes were producing oxygen well in advance of what geologists refer to as the "Great Oxidation Event" about 2.4 billion years ago that initiated the oxygen-rich atmosphere that fostered life as we know it.

In fact, the added sulfur might have allowed marine microbes to consume methane, which could have set the stage for atmospheric oxygenation. Before that occurred, it is likely large amounts of oxygen were destroyed by reacting with methane that rose from the ocean into the air.

"It supports the theory that oxygen was being produced for several hundred million years before the Great Oxidation Event. It just took time for it to reach higher concentrations in the atmosphere," Stueken said.

The research examined data on sulfur levels in 1,194 samples from marine sediment formations dating from before the Cambrian period began about 542 million years ago. The processes by which sulfur can be added or removed are understood well enough to detect biological contributions, the researchers said.

The data came from numerous research projects during the last several decades, but in most cases those observations were just a small part of much larger studies. In an effort to provide consistent interpretation, Stueken combed the research record for data that came from similar types of sedimentary rock and similar environments.

"The data has been out there for a long time, but people have ignored it because it is hard to interpret when it is not part of a large database," she said.

Co-authors are David Catling and Roger Buick, UW professors of Earth and space sciences. The work was funded by the National Science Foundation and the Virtual Planet Laboratory in the UW Department of Astronomy.

.


Related Links
Virtual Planet Laboratory in the UW Department of Astronomy.
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Researchers find our inner reptile hearts
Copenhagen, Denmark (SPX) Sep 19, 2012
An elaborate system of leads spreads across our hearts. These leads - the heart's electrical system - control our pulse and coordinate contraction of the heart chambers. While the structure of the human heart has been known for a long time, the evolutionary origin of our conduction system has nevertheless remained a mystery. Researchers have finally succeeded in showing that the spongy tis ... read more


EARLY EARTH
Protection for Moon, Mars astronauts eyed

Russia to start research base on the Moon

Remains of astronaut legend Neil Armstrong buried at sea

Memorial service honors 'man on the moon' Armstrong

EARLY EARTH
Why Curiosity Matters

Robotic Arm Tools Get to Work

NASA Mars Rover Targets Unusual Rock Enroute to First Destination

Curiosity's Stars and Stripes

EARLY EARTH
B612 Wins Funding Support From Prominent Business Leadersy

Cavenauts return to Earth

Brazil unveils tax incentives to boost tech innovation

New Technology Being Stymied by Copyright Law

EARLY EARTH
China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

EARLY EARTH
Crew Members Prepare for Departure

ISS Crew Lands Safely in Kazakhstan

ISS Crew Enjoys Light Duty Day

Europe's ATV-3 Spacecraft to Readjust Space Station's Orbit

EARLY EARTH
California Governor Signs the Spaceflight Liability and Immunity Act

Processing is underway with the next Automated Transfer Vehicle to be orbited by Arianespace

Fueling underway with the Galileo satellites for next Soyuz launch from French Guiana

SpaceX, NASA Target Oct. 7 Launch For Resupply Mission To Space Station

EARLY EARTH
Meteors Might Add Methane to Exoplanet Atmospheres

Two 'hot Jupiters' found in star cluster: NASA

Planets Can Form in the Galactic Center

Birth of a planet

EARLY EARTH
Cancer research yields unexpected new way to produce nylon

Yale Researchers Call for Specialty Metals Recycling

Drink, flirt, stumble home: there's a beer fest app for that

Researchers Demonstrate Cheaper Way To Produce NFO Thin Films




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement